An optimization model for line planning and timetabling in automated urban metro subway networks. A case study.

Yolanda Hinojosa
Universidad de Sevilla

joint work with V. Blanco (UGR), E. Conde (US) and J. Puerto (US)

V Jornadas Doctorales del Programa de Doctorado en Matemáticas Cádiz, November 2019

Motivation of the Project

Oetrolab

R\&D Company interested on implementing automatic subway networks in Europe.

Contract: 1853/0257 (Société Metrolab Ω, Service Contrôle de Gestion), 2014.

Motivation of the Project

metrolab

R\&D Company interested on implementing automatic subway networks in Europe.

Contract: 1853/0257 (Société Metrolab®, Service Contrôle de Gestion), 2014.
V. Blanco, E. Conde, Y. Hinojosa, J. Puerto.
"An optimization model for line planning and timetabling in automated urban metro subway networks. A case study." Submitted to Omega.

Outline

(1) Problem Description
(2) A mathematical programming model
(3) Algorithm
4. Case Study and Computational Experiments
(5) Extensions

Problem Description

Problem Description

Problem Description

Problem Description

Goal: Optimizing the operations of the subway network (a pilot experience to evaluate the costs and needs in automatic subway networks).

Public Transportation Planning

(1) network design, where the stations, links and routes of the lines are established,
(2) line planning, specifying the frequency and the capacity of the vehicles used in each line.
(3) timetabling, defining the arrival/departure times and
(4) scheduling, in which vehicles and/or crews are planned.

Public Transportation Planning

(1) network design, where the stations, links and routes of the lines are established,
(2) line planning, specifying the frequency and the capacity of the vehicles used in each line.
(3) timetabling, defining the arrival/departure times and
4) scheduling, in which vehicles and/or crews are planned.

Public Transportation Planning

(1) network design, where the stations, links and routes of the lines are established,
(2) line planning, specifying the frequency and the capacity of the vehicles used in each line.
(3) timetabling, defining the arrival/departure times and
4) scheduling, in which vehicles and/or crews are planned.

A very complex problem: multiobjective, multilevel, stochastic, combinatorial, ...

Some simplifications must be assumed in order to obtain operational solutions. The usefulness of the model will be conditioned by these assumptions.

A what-if tool to make rational decisions.

Problem Description

Input Data

Structure of the network (no. of lines, stations, distances, speed, stations of the short-turns, ...).

Possible Capacities for the trains (based on the carriages).
Safe times between trains.
2 Passengers flow between each O-D (can be assumed uniformly distributed in time windows of the planning horizon).

Problem Description

Goal: Optimizing the operations of the subway network.

Minimize the operative costs (no. of rounds, capacities,..).
Minimize the no. of passengers exceeding effective capacities.
啫 Maximize the profit (by passengers use).

Problem Description

Decisions

层 Number of rounds (complete lines and short-turns) over the same line to be planned in the time horizon.

Capacities (among the available) for each of the trains in a route.
W Timetables for each of the lines operating in the system.

A mathematical programming model

(1) The whole planning is partitioned into different time windows (with homogeneous demand): peak, off-peak, etc.. hours

A mathematical programming model

(1) The whole planning is partitioned into different time windows (with homogeneous demand): peak, off-peak, etc.. hours
(2) Each line is considered duplicating stations \rightarrow PLATFORMS!!

Parameters：Network

运 $[0, T]$ ：Time horizon．

选 $L=L S \cup L S N$ ：Set of lines in the network formed by the set of lines containing short－turns and the set of lines that do not contain short－turns．

$S_{\ell}=\left\{1_{S_{\ell}}, \ldots, n_{S_{\ell}}\right\}$ ：Stations of short－turns $\ell \in L S$ ．
左 d_{i}^{ℓ} ：Travel distance between the stations i and $i+1$ of the line $\ell \in L$ ．
有 e_{i}^{ℓ} ：Stopping time that a train spends in the station i of the line $\ell \in L$ ．

国 $Q=\left\{q_{1}, \ldots, q_{|Q|}\right\}$ ：Possible capacities for trains operating in all the lines．
法 $I S^{\ell}$ ：Safety interval between consecutive rounds in line $\ell \in L$ ．
$K_{\ell}=\left\{1, \ldots, \bar{k}_{\ell}\right\}$ ：Rounds made in the line $\ell \in L$ ．
（Maximum number of rounds： $\bar{k}_{\ell}=\frac{T}{I S^{\ell}}$ ）

Parameters：Passengers Flow

攺 ${ }^{l}$ ：Passenger at the beginning of the time horizon at station i of line ℓ ．

限 β_{i}^{l} ：Rate of external passenger which enter to the transportation system at station i to use line ℓ ．

位 $p_{i j}^{\ell}$ ：Proportion of passengers using the network starting at station i that go to the station j of line ℓ ．

运 $\tau_{i}^{\ell \ell^{\prime}}$ ：Proportion of passengers that get off a train in a transfer－station i of the line ℓ to transfer to line ℓ^{\prime} ．

Parameters：Costs and profits

列 ${ }_{q}^{l}$ ：Fixed cost per complete line round of capacity $q \in Q$ on line $\ell \in L$ ． Largest capacities and largest lines usually involve more cost on the rounds．
$b S_{q}^{\ell}$ ：Fixed cost per short－turns round of capacity $q \in Q$ on line $\ell \in L$ ．
不 $\gamma_{i j}^{\ell}$ ：Unitary profit of transporting a passenger from the station i to the station j of the line $\ell \in L$ ．

柞：Unitary penalty for passengers who cannot get on the first arriving train due to its limited capacity and still insist on using the system．

居 μ_{2} ：Unitary penalty for passengers who leave the system after they cannot get on the first arriving train due to its limited capacity．

1 α ：Proportion of passengers who decide to wait for the next train in case they cannot get on a train because of lack of capacity．

Variables

ℓ : line, $\quad k$: round, $\quad i$: station/platform, $\quad q$: capacity.

Variable	Description
$t_{1}^{k \ell}$	Departure time from the initial station of line $\ell \in L$ at its k-th trip.
$f_{i}^{k \ell}$	Flow of passengers captured in the station i by the train that covers the k-th trip of the line $\ell \in L$, when k is a whole trip.
$g_{i}^{k \ell}$	Flow of passengers captured in the station $i \in S_{\ell \backslash\left\{n_{\ell}\right\}}$ by the train that covers the k-th trip of the line $\ell \in L S$, when k only covers the short-turn.
$w^{k \ell}$	Difference between the actual departure time from the first short-turn station of the k-th trip of line $\ell \in L S$ and the time when it should depart from this station regarding its departure time from the initial line station.
$y_{q}^{k \ell}$	$\begin{cases}1 & \text { if the } k \text {-th trip of line } \ell \in L \text { is a whole trip with capacity } q \\ 0 & \text { otherwise }\end{cases}$
$y_{S q}^{k \ell}$	$\begin{cases}1 & \text { if the } k \text {-th trip of line } \ell \in L S \text { traverses the short-turn with capacity } q \text { - } \\ 0 \quad \text { otherwise }\end{cases}$
$t_{i}^{k \ell}$	Departure time from the station i of line ℓ in its k-th trip. $D_{i}^{\ell(t)}$Number of passengers accumulated from instant 0 up to instant t in the station i of line $\ell \in L$.
$h_{i}^{k \ell}$	Excess of passengers that where not able to get on the train at station i at the k-th trip of line $\ell \in L$ because of a lack of capacity.
$x_{i}^{k \ell}$	Excess of passengers only if k is a true trip for station i of line $\ell \in L$.

Variables：Auxiliary

在 $t_{i}^{k \ell}$ ：Time instant in which a train departs from station i ．

$$
\begin{align*}
& t_{i}^{k \ell}=t_{1}^{k \ell}+\sum_{r=1}^{i-1}\left(d_{r}^{\ell}+e_{r+1}^{\ell}\right), \quad i>1,(i, \ell) \in \overline{\mathcal{S}}, k \in K_{\ell}, \tag{T-1}\\
& t_{i}^{k \ell}=t_{1}^{k \ell}+\sum_{r=1}^{i-1}\left(d_{r}^{\ell}+e_{r+1}^{\ell}\right)+w^{k \ell}, \quad i>1, i \in S_{\ell}, k \in K_{\ell}, \ell \in L S \tag{T-2}
\end{align*}
$$

层 $t_{1 \mapsto 1_{S_{l}}}$ ：Time difference between the time instant in which a train departs from the first station of the short－turns and the first station of the line．

$$
t_{1 \mapsto 1}=\sum_{r=1}^{1_{s_{l}}-1}\left(d_{r}^{l}+e_{r+1}^{\ell}\right)
$$

层 $D_{i}^{\ell}(t)$ ：Accumulated flow of passengers up to time t at station i ．

Variables: Auxiliary

层 $h_{i}^{k \ell}$: Excess of passengers at station i.

- For the first round $(k=1)$:

$$
\begin{align*}
& h_{i}^{1 \ell}=D_{i}^{\ell}\left(t_{i}^{1 \ell}\right)-f_{i}^{1 \ell}, \quad \text { for }(i, \ell) \in \bar{S}, \tag{H-1}\\
& h_{i}^{1 \ell}=D_{i}^{\ell}\left(t_{i}^{1 \ell}\right)-f_{i}^{1 \ell}-g_{i}^{1 \ell}, \quad \text { for } i \in S_{\ell} \backslash\left\{n_{S_{\ell}}\right\}, \ell \in L S, \tag{H-2}\\
& h_{n_{S_{\ell}}}^{1 \ell}=D_{n_{S_{\ell}}}^{\ell}\left(t_{n_{S_{\ell}}}^{1 \ell}\right)-f_{n_{S_{\ell}}}^{1 \ell}+\sum_{r=1_{S_{\ell}}}^{n_{s_{\ell}}-1} \sum_{j=n_{S_{\ell}}+1}^{n_{\ell}} p_{r j} g_{r}^{1 \ell}, \quad \text { for } \ell \in L S, \tag{H-3}
\end{align*}
$$

Variables: Auxiliary

$h_{i}^{k \ell}$: Excess of passengers at station i.

- For the first round $(k=1)$:

$$
\begin{align*}
& h_{i}^{1 \ell}=D_{i}^{\ell}\left(t_{i}^{1 \ell}\right)-f_{i}^{1 \ell}, \quad \text { for }(i, \ell) \in \bar{S}, \tag{H-1}\\
& h_{i}^{1 \ell}=D_{i}^{\ell}\left(t_{i}^{1 \ell}\right)-f_{i}^{1 \ell}-g_{i}^{1 \ell}, \quad \text { for } i \in S_{\ell} \backslash\left\{n_{S_{\ell}}\right\}, \ell \in L S, \tag{H-2}\\
& h_{n_{S_{\ell}}}^{1 \ell}=D_{n_{S_{\ell}}}^{\ell}\left(t_{n_{S_{\ell}}}^{1 \ell}\right)-f_{n_{S_{\ell}}}^{1 \ell}+\sum_{r=1_{S_{\ell}}}^{n_{s_{\ell}}-1} \sum_{j=n_{S_{\ell}}+1}^{n_{\ell}} p_{r j} g_{r}^{1 \ell}, \quad \text { for } \ell \in L S, \tag{H-3}
\end{align*}
$$

- For round $k>1$:

$$
\begin{align*}
h_{i}^{k \ell} & =D_{i}^{\ell}\left(t_{i}^{k \ell}\right)-D_{i}^{\ell}\left(t_{i}^{(k-1) \ell}\right)+\alpha h_{i}^{(k-1) \ell}-f_{i}^{k \ell}, \quad(i, \ell) \in \overline{\mathcal{S}} \\
h_{i}^{k \ell} & =D_{i}^{\ell}\left(t_{i}^{k \ell}\right)-D_{i}^{\ell}\left(t_{i}^{(k-1) \ell}\right)+\alpha h_{i}^{(k-1) \ell}-f_{i}^{k \ell}-g_{i}^{k \ell}, \quad i \in S_{\ell} \backslash\left\{n_{S_{\ell}}\right\}, \ell \in L S \tag{H-5}\\
h_{n_{S_{\ell}}}^{k \ell} & =D_{n_{S_{\ell}}}^{\ell}\left(t_{n_{S_{\ell}}}^{k \ell}\right)-D_{n_{S_{\ell}}}^{\ell}\left(t_{n_{S_{\ell}}}^{(k-1) \ell}\right)+\alpha h_{n_{S}}^{(k-1) \ell}-f_{n_{S}}^{k \ell}+\sum_{r=1_{S_{\ell}}} \sum_{j=n_{S_{\ell}}+1}^{n_{S_{\ell}}-1} p_{r j} g_{r}^{k \ell}, \ell \in L S . \tag{H-6}
\end{align*}
$$

Variables: Semicontinuous

Excess of passengers only for true trips
$x_{i}^{k \ell}=\left\{\begin{array}{ll}h_{i}^{k \ell} & \text { if } k \text { is a true trip for station } i \text { of line } \ell \\ 0 & \text { otherwise, }\end{array} \quad k \in K_{\ell,}, i \in N_{\ell}, \ell \in L\right.$.

Objective Function:

Capacity Costs

$$
\left\{\begin{array}{cl}
\sum_{k \in K_{\ell}} \sum_{q \in Q} b_{q}^{\ell} y_{q}^{k \ell} & \text { if } \ell \in L N S \tag{Cap}\\
\sum_{k \in K_{\ell}} \sum_{q \in Q} b_{q}^{\ell} y_{q}^{k \ell}+\sum_{k \in K_{\ell}} \sum_{q \in Q} b_{S q}^{\ell}\left(y_{S q}^{k \ell}-y_{q}^{k \ell}\right) & \text { if } \ell \in L S
\end{array}\right.
$$

Objective Function:

Reward per served passenger

$$
\left\{\begin{array}{cc}
\sum_{i \in N_{\ell} \backslash\{1\}} \sum_{k \in K_{\ell}} \sum_{r=1}^{i-1} \gamma_{r i}^{\ell} p_{r i}^{\ell} f_{r}^{k \ell} & \text { if } \ell \in L N S, \\
\sum_{k \in K_{\ell}}\left(\sum_{i \in N_{\ell} \backslash\{1\}} \sum_{r=1}^{i=1} \gamma_{r i}^{\ell} p_{r i}^{\ell} f_{r}^{k \ell}+\sum_{i \in S_{\ell} \backslash\left\{1 S_{\ell}\right\}} \sum_{r=1}^{i-1} \gamma_{r i}^{\ell} p_{r i}^{\ell} g_{r}^{k \ell}+\sum_{\substack{r \in S_{\ell}: \\
r \neq n_{S} \ell}} \sum_{j=n_{S}+1}^{n_{\ell}} \gamma_{r n_{\ell}}^{\ell} p_{r j}^{\ell} g_{r}^{k \ell}\right) & \text { if } \ell \in L S \text {. } \\
\text { (RewPPass }(\ell) \text {) }
\end{array}\right.
$$

Objective Function:

Cost NonServed Passengers

$$
\alpha \mu_{1} \sum_{i \in N_{\ell}} \sum_{k \in K_{\ell}} x_{i}^{k \ell}+(1-\alpha) \mu_{2} \sum_{i \in N_{\ell}} \sum_{k \in K_{\ell}} x_{i}^{k \ell},
$$

(NonServed (ℓ))

Overall Cost:

$$
(\operatorname{Cap}(\ell))-(\operatorname{RewPPass}(\ell))+(\operatorname{NonServed}(\ell))
$$

Constraints: Capacities and true/fake trips

- For $\ell \in L$:

$$
\begin{align*}
\sum_{q \in Q} y_{q}^{1 \ell}=1, & \ell \in L N S \tag{C1-1}\\
\sum_{q \in Q} y_{q}^{k \ell} \leq 1, & 1<k<\bar{k}_{\ell}, \ell \in L \tag{C1-2}\\
\sum_{q \in Q} y_{q}^{\bar{k}_{\ell} \ell}=1, & \ell \in L \tag{C1-3}
\end{align*}
$$

Constraints: Capacities and true/fake trips

- For $\ell \in L$:

$$
\begin{align*}
\sum_{q \in Q} y_{q}^{1 \ell}=1, & \ell \in L N S \tag{C1-1}\\
\sum_{q \in Q} y_{q}^{k \ell} \leq 1, & 1<k<\bar{k}_{\ell}, \ell \in L \tag{C1-2}\\
\sum_{q \in Q} y_{q}^{\bar{k}_{\ell} \ell}=1, & \ell \in L \tag{C1-3}
\end{align*}
$$

- For $\ell \in L S$:

$$
\begin{array}{cl}
y_{q}^{k \ell} \leq y_{S q}^{k \ell}, & q \in Q, k \in K_{\ell}, \ell \in L S \\
\sum_{q \in Q} y_{q}^{1 \ell}+\sum_{q \in Q} y_{S q}^{1 \ell} \geq 1, & \ell \in L S, \\
\sum_{q \in Q} y_{q}^{k \ell \ell}=\sum_{q \in Q} y_{S q}^{1 \ell}-\sum_{q \in Q} y_{q}^{1 \ell}, & \ell \in L S \\
\sum_{q \in Q} y_{S q}^{k \ell} \leq 1, & k \in K_{\ell, \ell} \in L S \tag{C1-7}
\end{array}
$$

Constraints: Time Control

- For $\ell \in L$:

$$
\begin{aligned}
& t_{1}^{1 \ell}=0, \quad t_{1}^{\bar{k} \ell}=T, \quad \ell \in L \\
& I S\left(\sum_{q \in Q} y_{q}^{k \ell}\right) \leq t_{i}^{k \ell}-t_{i}^{(k-1) \ell} \leq T\left(\sum_{q \in Q} y_{q}^{k \ell}\right), \quad k>1,(i, \ell) \in \bar{S}(\mathrm{C} 2-1)
\end{aligned}
$$

Constraints: Time Control

- For $\ell \in L$:

$$
\begin{aligned}
& t_{1}^{1 \ell}=0, \quad t_{1}^{\bar{k} \ell}=T, \quad \ell \in L \\
& I S\left(\sum_{q \in Q} y_{q}^{k \ell}\right) \leq t_{i}^{k \ell}-t_{i}^{(k-1) \ell} \leq T\left(\sum_{q \in Q} y_{q}^{k \ell}\right), \quad k>1,(i, \ell) \in \overline{\mathcal{S}}(\mathrm{C} 2-1)
\end{aligned}
$$

- For $\ell \in L S$:

$$
\begin{equation*}
I S\left(\sum_{q \in Q} y_{S q}^{k \ell}\right) \leq t_{i}^{k \ell}-t_{i}^{(k-1) \ell} \leq\left(T+t_{1 \mapsto 1_{S_{l}}}\right)\left(\sum_{q \in Q} y_{S q}^{k \ell}\right), i \in S_{\ell}, k>1 \tag{C2-3}
\end{equation*}
$$

$$
\begin{align*}
& t_{1}^{\kappa_{\ell} \ell} \leq T\left(1-\sum_{q \in Q} y_{S q}^{1 \ell}+\sum_{q \in Q} y_{q}^{1 \ell}\right) \tag{C2-4}\\
& -t_{1 \mapsto 1_{S_{l}}}\left(1-\sum_{q \in Q_{\ell}} y_{q}^{k \ell}\right) \leq w^{k \ell} \leq\left(T+t_{1 \mapsto 1_{S_{l}}}\right)\left(1-\sum_{q \in Q_{\ell}} y_{q}^{k \ell}\right), k \in K_{\ell}, \tag{C2-5}
\end{align*}
$$

Constraints: Flow Control

- Flow determined by the capacity of the train:

$$
\begin{align*}
& f_{i}^{k \ell}+\sum_{r=1}^{i-1} f_{r}^{k \ell}\left(\sum_{j=i+1}^{n_{\ell}} p_{r j}^{\ell}\right) \leq \sum_{q \in Q} q y_{q}^{k \ell}, \quad k \in K_{\ell}, i \in N_{\ell, \ell} \in L, \quad(\mathrm{C} 3-1) \\
& g_{i}^{k \ell}+\sum_{r=1 S_{\ell}}^{i-1} g_{r}^{k \ell}\left(\sum_{j=i+1}^{n_{S_{\ell}}} p_{r j}^{\ell}\right) \leq \sum_{q \in Q} q\left(y_{S q}^{k \ell}-y_{q}^{k \ell}\right), k \in K_{\ell}, i \in S_{\ell} \backslash\left\{n_{S_{\ell}}\right\}, \ell \in L S, \tag{C3-2}
\end{align*}
$$

Constraints: Flow Control

- Flow determined by the capacity of the train:

$$
\begin{align*}
& f_{i}^{k \ell}+\sum_{r=1}^{i-1} f_{r}^{k \ell}\left(\sum_{j=i+1}^{n_{\ell}} p_{r j}^{\ell}\right) \leq \sum_{q \in Q} q y_{q}^{k \ell}, \quad k \in K_{\ell}, i \in N_{\ell, \ell} \in L, \quad(\mathrm{C} 3-1) \tag{C3-1}\\
& g_{i}^{k \ell}+\sum_{r=1 S_{\ell}}^{i-1} g_{r}^{k \ell}\left(\sum_{j=i+1}^{n_{S} \ell} p_{r j}^{\ell}\right) \leq \sum_{q \in Q} q\left(y_{S q}^{k \ell}-y_{q}^{k \ell}\right), k \in K_{\ell}, i \in S_{\ell} \backslash\left\{n_{S_{\ell}}\right\}, \ell \in L S, \tag{C3-2}
\end{align*}
$$

- Flow determined by the demand function:

$$
\begin{align*}
& f_{i}^{1 \ell} \leq D_{i}^{\ell}\left(t_{i}^{1 \ell}\right), \quad i \in N_{\ell}, \ell \in L, \tag{C3-3}\\
& f_{i}^{k l} \leq D_{i}^{\ell}\left(t_{i}^{k \ell}\right)-D_{i}^{\ell}\left(t_{i}^{(k-1) \ell}\right)+\alpha h_{i}^{(k-1) \ell}, \quad k>1 i \in N_{\ell}, \ell \in L, \tag{C3-4}\\
& g_{i}^{1 \ell} \leq D_{i}^{\ell}\left(t_{i}^{1 \ell}\right), \quad i \in S_{\ell} \backslash\left\{n_{S_{\ell}}\right\}, \ell \in L S, \tag{C3-5}\\
& g_{i}^{k \ell} \leq\left(D_{i}^{\ell}\left(t_{i}^{k \ell}\right)-D_{i}^{\ell}\left(t_{i}^{(k-1) \ell}\right)\right)+\alpha h_{i}^{(k-1) \ell}, \quad k>1, i \in S_{\ell} \backslash\left\{n_{S_{\ell}}\right\}, \ell \in L S \tag{C3-6}
\end{align*}
$$

Constraints: Passenger Surplus

$$
\begin{align*}
& x_{i}^{k \ell} \geq h_{i}^{k \ell}-M_{i}^{\ell}\left(1-\sum_{q \in Q_{\ell}} y_{q}^{k \ell}\right),(i, l) \in \overline{\mathcal{S}} \text { or }\left(i=n_{S_{\ell}}, \ell \in L S\right), \quad(\mathrm{C} 4-1) \\
& x_{i}^{k \ell} \geq h_{i}^{k \ell}-M_{i}^{\ell}\left(1-\sum_{q \in Q_{\ell}} y_{S_{q}}^{k \ell}\right), i \in S_{\ell} \backslash\left\{n_{S_{\ell}}\right\}, \ell \in L S, \tag{C4-2}
\end{align*}
$$

A Math Programming Formulation

$$
\begin{array}{lr}
\min \sum_{\ell \in L} \operatorname{COST}(\ell) & \\
\text { s.t. }(\mathrm{C} 1),(\mathrm{C} 2),(\mathrm{C} 3) \text { and (C4), } & \\
0 \leq t_{1}^{k \ell} \leq T, & k \in K_{\ell}, \ell \in L, \\
f_{i}^{k \ell} \geq 0, & k \in K_{\ell}, i \in N_{\ell}, \ell \in L, i \in S_{\ell} \ell \in L S, \tag{P}\\
g_{i}^{k \ell} \geq 0, & k \in K_{\ell}, \ell \in L S, \\
w^{k \ell} \in \mathbb{R}, & k \in K_{\ell}, i \in N_{\ell, \ell \in L}, \\
x_{i}^{k \ell} \geq 0, & k \in K_{\ell}, q \in Q, \ell \in L, \\
y_{q}^{k \ell} \in\{0,1\}, & k \in K_{\ell}, q \in Q, \ell \in L S . \\
y_{S_{q}}^{k \ell} \in\{0,1\}, &
\end{array}
$$

The Demand function

$$
\begin{equation*}
D_{i}^{\ell}(t)=\beta_{0 i}^{\ell}+\beta_{i}^{\ell} t+J_{i \ell}^{E}(t)+\sum_{\ell^{\prime} \neq \ell, \ell^{\prime} \ni i} J_{i \ell \ell^{\prime}}^{I}(t) \tag{D}
\end{equation*}
$$

$\beta_{0 i}^{\ell}$: Number of passengers awaiting in the station i at the beginning of the planning horizon.
β_{i}^{ℓ} : Average rate of passengers arriving to the station i by unit of time.
$J_{i \ell}^{E}(t)$: Sum of the external block of arrivals of passengers up to the instant t to the station i.
$J_{i \ell \ell^{\prime}}^{I}(t)$: Sum of the block arrivals of passengers up to the instant t to the interchange station i of line $\ell \in L$ from line $\ell^{\prime} \in L$.

The Demand function

$s e_{r}^{i \ell}$: Time instants when the block of arrivals occur $\left(r=0, \ldots, r e^{i \ell}\right)$.
$\Psi_{i r^{\prime}}^{\ell}$: Discontinuity flow jump produced at time instant $s e_{r}^{i \ell}$.

$$
\begin{aligned}
& \delta_{r i \ell}^{E}(t)= \begin{cases}1 & \text { if } t \in\left[s e_{r}^{i \ell}, s e_{r+1}^{i \ell}\right) \\
0 & \text { otherwise },\end{cases} \\
& s e_{r}^{i \ell} \delta_{r i \ell}^{E}(t) \leq t<s e_{r+1}^{i \ell} \delta_{r i \ell}^{E}(t)+\widehat{T}_{\ell}\left(1-\delta_{r i \ell}^{E}(t)\right), \\
& \sum_{r=0}^{r e^{i \ell}} \delta_{r i \ell}^{E}(t)=1,
\end{aligned}
$$

External Arrivals: $J_{i \ell}^{E}(t)=\sum_{r=0}^{r e^{i \ell}}\left(\sum_{r^{\prime} \leq r} \Psi_{i r^{\prime}}^{\ell}\right) \delta_{r i \ell}^{E}(t), \quad i \in N_{\ell}, \ell \in L$.

The Demand function

$s e_{r}^{i \ell}$: Time instants when the block of arrivals occur $\left(r=0, \ldots, r e^{i \ell}\right)$.
$\Psi_{i r^{\prime}}^{\ell}$: Discontinuity flow jump produced at time instant $s e_{r}^{i \ell}$.
$\delta_{\text {ril }}^{E}(t)= \begin{cases}1 & \text { if } t \in\left[s e_{r}^{i \ell}, s e_{r+1}^{i \ell}\right), \\ 0 & \text { otherwise, }\end{cases}$
$s e_{r}^{i \ell} \delta_{r i \ell}^{E}(t) \leq t<s e_{r+1}^{i \ell} \delta_{r i \ell}^{E}(t)+\widehat{T}_{\ell}\left(1-\delta_{r i \ell}^{E}(t)\right)$,
$\sum_{r=0}^{r e^{i \ell}} \delta_{r i \ell}^{E}(t)=1$,
External Arrivals: $J_{i \ell}^{E}(t)=\sum_{r=0}^{r e^{i \ell}}\left(\sum_{r^{\prime} \leq r} \Psi_{i r^{\prime}}^{\ell}\right) \delta_{r i \ell}^{E}(t), \quad i \in N_{\ell}, \ell \in L$.
Internal Arrivals:
$J_{i \ell \ell^{\prime}}^{I}(t)=\sum_{r=0}^{\bar{k}_{\ell^{\prime}}}\left(\sum_{r^{\prime} \leq r} \Phi_{i r^{\prime}}^{\ell \ell^{\prime}}\right) \delta_{r i \ell \ell^{\prime}}^{I}(t), \quad i \in N_{\ell} \cap N_{\ell^{\prime}}, \ell \in L, \ell^{\prime} \in L$.

Example (A simplified version of Metrolab network)

Dimensions:
Capacities: 800 and $1600, T=20 \mathrm{~min}, \bar{k}_{\ell}=7$ and 10.

Example

$I S^{\ell}: 2$ minutes, $\alpha=1, \mu_{1}=0.1875, \tau=0.4$.

$p_{i j}^{\ell}$	1	2	3	4	5
	0	0.40	0.35	0.20	0
2	0.40	0	0.60	0.35	0
3	0.35	0.6	0	0.95	0
4	0.20	0.35	0.95	0	1
5	0.05	0.05	0.05	1	0

$p_{i j}^{l}$	1^{\prime}	2^{\prime}	3	4^{\prime}	5^{\prime}
1^{\prime}	0	0.40	0.35	0.20	0
2^{\prime}	0.40	0	0.60	0.35	0
3^{\prime}	0.35	0.60	0	0.95	0
4^{\prime}	0.20	0.35	0.95	0	1
5^{\prime}	0.05	0.05	0.05	1	0

Table: O-D matrix of Example: Lines 1-2 (left) and 3-4 (right).

$\boldsymbol{\gamma}_{i j}^{\ell}$	1	2	3	4	5
	0	0.3	0.4	0.6	1
2	0.3	0	0.1	0.3	1
3	0.5	0.2	0	0.2	1
4	0.6	0.3	0.1	0	0
5	0.9	0.6	0.4	0.3	0

$\gamma_{i j}^{l}$	1^{\prime}	2^{\prime}	3	4^{\prime}	5^{\prime}
1^{\prime}	0	0.2	0.5	0.7	1
2^{\prime}	0.2	0	0.3	0.5	1
3	0.4	0.2	0	0.2	0
4^{\prime}	0.7	0.5	0.3	0	0
$5{ }^{\prime}$	0.9	0.7	0.5	0.2	0

Table: Rewards of Example: Lines 1-2 (left) and 3-4 (right).

Example

	Lines									
	$\ell=1$					$\ell=2$				
Stations (i)	1	2	3	4	5	5	4	3	2	1
$\beta_{0}^{\ell}{ }_{i}$	50	50	50	50	0	50	50	50	50	0
β_{i}^{ℓ}	10	100	120	90	0	10	160	180	150	0
	$\ell=3$					$\ell=4$				
Stations (i)	1'	2'	3	4'	5'	5'	$4 '$	3	2'	$1 '$
$\beta_{0 i}^{\ell}$	50	50	50	50	50	50	50	50	50	50
β_{i}^{ℓ}	10	150	170	160	0	10	100	180	150	0

Table: Coefficients of the Demand functions of Example.

Model Coded in Python 3.6 + Gurobi 8.0 in a Mac OSX with an Intel Core i7 processor at 3300 MHz and 16 GB of RAM.

$$
\text { CPU: } 12 \text { hours } \quad \text { MIP GAP: } 1.51 \% .
$$

Example

Timetable (Line 1)

$k:$ Capacity	2	DepTime	Get-Off	$f_{i}^{k \ell}\left(g_{i}^{k \ell}\right)$	$h_{i}^{k \ell}$	$x_{i}^{k \ell}$	Load
1: 800	1	07:30:00	0.00	50.00	0.00	0.00	50.00
	2	07:33:30	20.00	400.00	0.00	0.00	430.00
	3	07:35:00	257.50	627.50	101.50	101.50	800.00
	4	07:37:30	746.13	725.00	0.00	0.00	778.88
	5	07:40:30	778.88	0.00	0.00	0.00	0.00
2S: 1600	2	07:39:34	0.00	606.94	0.00	0.00	606.94
	3	07:41:04	364.17	1231.59	0.00	0.00	1474.36
	4	07:43:34	1474.36	0.00	638.18	0.00	0.00
3: 0	1	07:30:00	0.00	0.00	0.00	0.00	0.00
	2	07:39:34	0.00	0.00	0.00	0.00	0.00
	3	07:41:04	0.00	0.00	0.00	0.00	0.00
	4	07:43:34	0.00	0.00	638.18	0.00	0.00
	5	07:40:30	0.00	0.00	0.00	0.00	0.00
4S: 800	2	07:43:12	0.00	364.02	0.00	0.00	364.02
	3	07:44:42	218.41	603.05	0.00	0.00	748.66
	4	07:47:12	748.66	0.00	1014.15	0.00	0.00
5: 0	1	07:30:00	0.00	0.00	0.00	0.00	0.00
	2	07:43:12	0.00	0.00	0.00	0.00	0.00
	3	07:44:42	0.00	0.00	0.00	0.00	0.00
	4	07:47:12	0.00	0.00	1014.15	0.00	0.00
	5	07:40:30	0.00	0.00	0.00	0.00	0.00
6: 1600	1	07:46:15	0.00	162.60	0.00	0.00	162.60
	2	07:49:45	65.04	655.05	0.00	0.00	752.61
	3	07:51:15	449.94	1297.33	0.00	0.00	1600.00
	4	07:53:45	1494.25	1494.25	109.44	109.44	1600.00
	5	07:56:45	1600.00	0.00	0.00	0.00	0.00
7:800	1	07:50:00	0.00	37.40	0.00	0.00	37.40
	2	07:53:30	14.96	373.99	0.00	0.00	396.43
	3	07:55:00	237.48	641.05	0.00	0.00	800.00
	4	07:57:30	747.38	446.03	0.00	0.00	498.65
	5	08:00:30	498.65	0.00	0.00	0.00	0.00

Math-Heuristic Algorithm

Case Study

q	$b_{q}^{\ell} \& b S_{q}^{\ell}$
400	$48.8 \times \operatorname{length}(\ell)$
800	$97.4 \times \operatorname{length}(\ell)$
1600	$194.8 \times \operatorname{length}(\ell)$

Line	μ	$I S^{\ell}$
M	0.1875	1.66
T	0.1875	1.25

$$
\star \gamma_{i j}^{\ell}=0.075 \times d_{i j}^{\ell}+0.075
$$

Time window: 7:30-9:30 a.m.

Line M					Line T				
	d_{i}^{ℓ}	e_{i}^{ℓ}	$\overleftarrow{\boldsymbol{\beta}_{i}^{\ell}}$	$\overrightarrow{\beta_{i}^{\ell}}$		d_{i}^{ℓ}	e_{i}^{ℓ}	$\overleftarrow{\beta_{i}^{\ell}}$	$\overrightarrow{\beta_{i}^{\ell}}$
Debussy - Chopin	6.32	0	3.3	138.7	Arlequin-Shak.	0.88	0	3.3	100
Chopin-Beeth.	2.53	0.5	36.7	130	Shak.-Molière	2.22	0.3	5	93.3
Beeth.-Scala	0.97	0.3	108.3	21.7	Molière-Scala	0.88	0.3	38.3	68.3
Scala-Mozart	1.94	0.6	125	99.6	Scala-Beaum.	0.88	0.5	25	140
Mozart Bach	2.53	0.3	120	13	Beaum.-Tchekov	1.11	0.3	50	41.6
Bach-Mont.	3.16	0.5	40	8.7	Tchekov-Ionescu	1.11	0.3	53.3	3.33
Max Rounds			40	30	Max Rounds			20	40

More Experiments

More Experiments

		Matheuristic		MILP			
Network	\|LS		BestObj	CPU(sec.)	BestObj	CPU (sec.)	G AP (\%)
2LOT	0	145702	< 0.1	145573	7	0.09	
	2	114145	11	112916	TL	1.08	
4L1T	0	206729	132	206242	TL	0.24	
	4	152890	631	152016	TL	0.57	
4L2T	0	348267	3522	347224	TL	0.30	
	4	333102	4892	332665	TL	0.13	
6L1T	0	276961	1130	276545	TL	0.15	
	2	235488	1521	234589	TL	0.38	
6L2T	0	249038	606	248854	TL	0.07	
	4	203080	2882	203080	TL	0.00	
6L3T	0	248988	520	248979	TL	<0.01	
	2	217004	2688	216909	TL	0.04	
8L3T	0	404627	432	404147	TL	0.12	
	4	362916	1467	362908	TL	< 0.01	
8L4T	0	404469	1191	404211	TL	0.06	
	4	374067	1144	374064	TL	<0.01	

$\mathrm{TL}=12$ hours.

Extensions

(1) Strategies to put join time windows.
(2) Introduce the average speed between consecutive stations and the stopping time that a train spends in a station as variables.
(3) Flexibilize the use of short-turns.
(4) Consider stochastic demands.
(5) ...

Extensions: Public Transportation Planning

(1) network design, where the stations, links and routes of the lines are established,
(2) line planning, specifying the frequency and the capacity of the vehicles used in each line.
(3) timetabling, defining the arrival/departure times and
4) scheduling, in which vehicles and/or crews are planned.

A very complex problem: multiobjective, multilevel, stochastic, combinatorial, ...

Muchas gracias.

