Minimal surfaces:
From Soap Lilms to Black Holes
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Principle of least action

“Nature is thrifty tn all its actions”

Pilerre Louls Mauprar%ms
(Leibniz, Euler)

“You often see this phenomenon (least action)
in nature because, of all possible
configurations you can have, the ones that
actually occur have the least energy”

L. Simomn, Stanford Umiv&rs&%v



Principle of least action

mMinimizakion (or least action) has been a
foundational concept in both geometry and
ijsws.

Samyte exa.myte:

The trojectory of a particle
under a gravitational field
(9eodesic)



Principle of least action

‘Geometlry, the science of space, heeds
differential equations to measure the
curvature of objects and how it changes. That
s one reason curvabure is so linked to
physics, That is also why geomelry is
instrumental to se many areas of physics”

$.T. Yau, Harvard Umivarsi%v



Principle of least action

In the 1%th (:@.M&u.rj, tuler, Lagrange,
Meusnicur skudied a natural probtem on
minimizakion:

Is there a least-area surface whose bmumdarj
is a given simple closed curve?

More generally, Minimal Surfaces






Soap films

Soap films always adopt the shape which
minimizes their elastic energy, and therefore
their area. (Minimal Surfaces)




Soap films

In the 1%00s, the pkjsw&s& J,
Plateau (F?robtem raised bv
Lagrange) conducted classical
experiments in this area, dipping
wires bent into assorted shapes
in tubs of soapy water. Plateau
concluded that the soap films
that formed were always
minimal surfaces, Plateau
hjpo&hesized that for any given
closed curve, you can always
produce a minimal surface with
the same baumdarv.




Soap films

Plakeaus Problem: “Is there a leask-area
surface whose boundary is a given simple
closed curve?”

The Plateau’s Problem was
solved bj J. Douglas and
(ndependently) 7. Radd b 1930,

For ks solubion ko Ehe Plakeau’s
Problem; Douqlas (right) was
awarded with the Fields Medal
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< LentainnLain




Bastecs on Riemannian Geome%rv

(M3,9) three-dimensional Riemannian manifold

q measures the length of vector fields on the
tangent space TM?

V  ltells how to differentiate vector fields

4 measures the curvature ab each pom&

R(X, Y)Z = VxVyvZ4 —VyVxZ — V[X,Y]Z



Bastecs on Riemannian Geome%rv

Notion of curvature

Curves: ik is the variation of the normal
vector, te., the acceleration is related to the
normal bfj the curvature.
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Basics on Riemannian Greomekbr

Notion of curvature

T\

a function, the Gaussia
deviation from being

Surfaces: The Riemann Curvature Tensor R is
K measures the

a:ompie&ei.v determined bv

Curvakbture K.

fLak.

.’..’.’H”.’.’.’ o ~ ~ A
fa55//nﬂnnanﬂﬂ/ﬂﬂwﬂw//mm/ﬁ.._
ﬁﬁ., LLLLLLLLEEETEEEEERNNTRY,
LA AL T L Y
' T 4 R R R R R IR RIRRIR R RN Mt




Bastecs on Riemannian Geome%rv

Notion of curvature

3-manifold: The Riemann Curvabture Tensor R
measures the extent o which the mebric tensor
ts ok Lacaltv tsomelbric bo a Euclidean space.

¢ Sectional Curvabture K
Kleyej) := 9lRleej)ee)

o [Kiccl Curvabure Ric:
Ric := Ksleiej) dxidx;

e Scalar Curvabure S:
S := Trace(Ric)



Bastecs on Riemannian Geome%rv

(M3,9) three-dimensional Riemannian manifold. Let
TCM32 be a complete and oriented surface.

o Intrinsic Geomelry: g induces a Riemannian
mebric on .

Graussian Curvalbure K

¢ Extrinsic Geomebry: N induces a self-ad joint
o[a@.ra&or o the tangent space S Y ES

‘Primaipat Curvakures k. and ke
Exkrinsie Curvakbure Ko
Mean Curvature H



Basics o Riemannian Geome&rv

(M3,9) three-dimensional Riemannian manifold. Let
TcM3 be a complete and oriented surface.

Inkrinsic & Exktrinsic Geometry:

Crawss Equ&&iov\
K - Ke + Ks







Minimal surfaces

T M3 (oriented and connected) is a mininal

surface Yf critical point of the area functional:

F:= Area, L.e. _d_ F(t) — / J-H #2250
gl 5

for all compactly supported normal variations:

Z(E):=lexp (F(pIN(R)) : pe X}, [t

N := hormal along 2
exp := expamem&at map on M3
{ = plecewise smooth c:om[pwc& supgar&



Examples

The PL&M@.: Lagrange 1762

Helicotld Scherk Surface

v

Euler 1744/
Euler 1744 Meuswnier 1776 ¥



History

Schwarz (1¥65): solution to the Plateauw Problem
for a regular guadrilateral

Schwarz (1¥67): solution to the Plateau Problem
for a general guadrilateral; allowing the
construction of perﬁodic: minimal surfaces

Enneper-Weierstrass Representation (1¥&63):
Linking minimal surfaces ko complex analysis
and harmonic functions




Examples

P-Schwarz (1¥¥0s) Riemann example (1%867)

Ehheper Surface
(1x64)



Examples

For a long ktime, some geometers su[ﬂporﬁed the
conjecture that no other embedded examples of
finite topology would exist, More thawn 100 Years

Costa-Hoffman-
Meeles

Costa (19%2)



Classification

of

Minimal Surfaces



Stable surfaces

Among complete minimal surfaces in M3, the

subclass of sktable minimal surfaces is the first one
to be understood and described. 2 CM2 stable iff

d2
772 F(t) >0 (C‘mainimizer”
t t=0

Schoen-Yau {(H=0):

/ 2147 4 / F?Ric(IV, N) < / VIR Vfe HAA(E)
P > p 5



Stable surfaces

One writes the s&abiuﬁj LMequaLiEj i the form

d2

where L is the Shrodinger-type operator
Li=A + |AR + Ric(NN) = A =K+{4H2-K+S)

L is khnown as the Linearized operator of the
meai curvakture, Le,,

1
dt




Schrodinger & stabiliby

Let T be a Riem. surface and let L be the Schrodinger
Qpara&cw given bjz

(= A + % 9 smooth on .

These bype of equations (time-independent version)
were used i physics, bj E. Schrodinger in 1926, to
describe the quantum state of a physical system. Later,
M. Born interpreted solutions to the Schrodinger
equation as a quantity related to the prababitiﬁj
amplitude.



Schrodinger & stability

Let T be o Riem. surface and let L be the Schrodinger
operator glven bjz

= A + % 9 smooth on Z.

The Index Form is given btj:

I defines a guadratic form in a infinite dimensional
space, therefore (Classical ELL&FEM Theorv) we have:
SO ORC <, 4 I



Schrodinger & stability

Let T be o Riem. surface and let L be the Schrodinger
operator glven bjz

= A + % 9 smooth on Z.

The Index Form is given bjz

L is stable ff o<l; f o<I(f),Vfe H,'*(T)



Schrodinger & stability

(A) Analytically: In terms of L, stability means that
-L is non-neqgative (in short -L < o), ie,, all its

eigenvalues are hon-neqatives. Moreover, T has finite
index if -L has only finitely many cigenvalues.

(B) Geowmetrically: ¥ has finikte index if there is only
a finite dimensional space of normal variations
which strictly decreases the area.



Stable surfaces

Do Carmo & Peng ('79): A complete, oriented stable
minimal surface in the Euclidean space is a plane,

Schoen & Yau ('79): Let ZcM? be a compact, oriented
stable mininal surface (M2 has nonnegative scalar
curvature). Then X is a sphere or a flat torus.

Schoen & Yau (79): Let M3 be a compact orientable
3-manifold with nonnegative scalar curvature, If M2
contains an incompressible compact orientable

surface I with genus greater than or equal to 1,
then M3 is flak.



Stable surfaces

Fischer-Colbrie & Schoen ('$0): Letk ZcMm3 be a
complete, oriented stable mininmal surface (M2 has
nonnegative scalar curvature). then X is conformally
equivalent either to the plane or to the cylinder,

Moreover, if X is conf a cylinder and ); IK|< +o0,
Fhei 2 is &o&aitv geodesic and $ vanishes along X

M. Reiris ("10) and E. (Y10): Under the above
hypothesis. 1{ = is cond. a tfjumder, then = is flat,
totally geodesic and S vanishes along .



Furike Index

Fischer-Colbrie (g0s): Lek 3cR2 be a complete,
oriented minimal surface. I has finite index iff

j\ Ke +00; Le., = has finite total curvature

Osserman/Schoen/White: Finite total curvature
implies that X is proper and conformally
equivalent to a compact surface pum:&ured at a
finite number of points. Moreover, each embedded
end (punctures), is asymptotically a plane or a
half-catenoid.




Furike Index

Index 1 Index 29+3

Costa-Hotfman-
Meeles



Furike Index

Fischer-Colbrie-Schoen (¥0)/do Carmo-Peng (79)/
Poqorelov (¥1): The OV\i.v &ompl&&e orientable
stable minimal surface is the plane

Schoen (¥3): The plane is the unique complete
orientable finite index and one ended minimal
surface

Ros (Rood): The cwniv ﬁOMF’L&EQ stable minimal
surface is the plane

Lopez-Ros (¥9): The catenoid and Enneper's
surface are the unique complete orientable index
one minimal surfaces




Furike Index

Schoen (¥3): The catenoid is the unique complete
embedded orientable finite index and two ended
minimal surface

Lopez—Ros (9): The plane and catenoid are the
unique complete embedded orientable finite index
minimal surfaces with genus zero

Chodosh-Maximo (2017): There are no complete
embedded orientable minimal surfaces with index
2 Or 3




Yauw's &‘:Ov\je&uw_

Poincarée (1905): Conjectured that every smooth
surface topologically equivalent to the sphere
contains three simple closed geodesics

Question: wa{mi%e number??




Yauw's &‘:Ov\je&uw_

Birkhotf (1917): The first to use a Mountain Pass
type arqument to comstruct a simple closed
geodesics n any 2-sphere (min-max mebhod)

Ballmann ('7%): Proved the Poincaré’s Conjecture

Franks ("92): waimﬁetj many (immersed) in 2-
spheres using Dynamical Systems

Banqgert ('93): Im&mi&ebj many (immersed) in 2-
spheres using min-max methods



Yauw's &ov\je&u\*@.

Yau's conjecture (¥2): A closed Riemannian three-
manifold has an infinite number of smooth
closed immersed minimal surfaces.




Yauw's aamjecﬁuw_

Almgrem-Pitks (¥1): Any closed Riemannian
manifold of dimension okt least 3 and less than 7,
there exists a smoothly embedded closed minimal
hjpersur§a¢e (min-max %h@.o-r'j)

Marques-Neves (17): Settled Yaus Conjecture when
Fhe Ricel curvature is posi&wﬁ and dimension less
than 7 (min-max theory)

Margues-Neves-Irie (1¥): Settled Yau's Conjecture
for generic mebrics and dimension less than 7
(min-max theory and Dynamical Systems)



Yauw's &ov\je&u\*@.

A. Song (1%): Settled Yau's Conjecture in dimension
less than 7




Ossermain’s @omje&ure

Bernstein (1917): The plane is the only entire graph
over a plane in &3

Osserman’s Conjecture (¥0s): Asiked the guestion
about whether the plane and the helicoid were the
only embedded, simply-connected, complete
minimal surfaces. He described this question as
potentially the most beautiful extension and
explanation of Beristein’s Theorem.



Ossermain’s comjecmm

Colding-Minicozzi (04): A connected, complete,
embedded minimal surface of finite topology in
R3 is properly embedded.

Th@j used bthe One Sided Curvalbure
Eskimakes bv Colding-Minicozzi



Ossermain’s comjecmm

Meeks-Rosenberq (2006): A complete, embedded,
SiMPLj*ﬁOMMQ&&&d minimal surface in R3 is a plane
or a helicoid,

Th@j used bthe One Sided Curvalbure
Eskimakes bv Colding-Minicozzi
(2004)



Classification Planar domains

Meelks—Pérez-Ros (R00&): Up to scaling and rigid
motion, any connected, properly embedded,

minimal planar domain in R3 is a plane, a
helicoid, a catenoid or one of the Riemann
minimal examples, In particular, for every such
surface there exists a foliation of R3 by parallel
planes, each of which intersects the surface
transversely in a connected curve which is a circle
or a line,






Spetmt Qeta&v&%v

“Reflections of this bype made it clear to me as long ago
as shortly after 1900, ie., shortly after Planci's
trailblazing worlk, that neither mechanics nor
electrodynamics could (except in Limiting cases) claim
exact validity, Gradually I despaired of the possibility of
discovering the true Laws by means of constructive
efforts based on known facts. The Llonger and the more
desyer&%ei.v I bried, the more I came to the conviction
that only the discovery of a universal formal principle
could lead us bto assured resulks.. How, then, could such a
universal principle be found?”

Albert Etnskein



Speamt Qeta&viéj

In 1908, Einstein proposed (after considerable
and independent contributions of Lorentz,
Poincaré and obthers) the Spaﬂmt Qai.aﬂvi%j ”Y“hec:vrj:

o Principle of Relativity: ALl uniform motion
is relakive, and there is ho absolute and well-

defined state of rest for all the Laws of
Phjsws‘

o Principle of Invariant Light Speed: The speed
of Light in empty space is the same for all
inertial observers, reqardless of the state of
motion of the source.



Grelneral Qeta&v&v

In 1918, Cinstein ncluded gravity through the
Equiv&i&h&e ‘Primti,!ate:

“A Little reflection will show that the Law of the equality
of the inertial and gravitational mass is equivalent to the
assertion that the acceleration imparted to a body by a
gravitational field is independent of the nature of the
bc}dv. For Newtow's equation of motion in a gravitational
field, written out in full, ik is:

(Inertial mass) (Acceleration) = (Intensity of the
gravitational field) (Gravitational mass).

It is only when there is numerical equality bebween the
nertial and gravitational mass that the acceleration is
independent of the nature of the bodv,”

A. Einstein



Greneral Qeta&v&j

e In 1915, A, Einstein included gravity through
the Equivalence ‘Primﬁigie, this relates:

Mass ¢—--3» Acceleration ¢<—--3» Curvakbure

Therefore,

vai,&fj 3 Geameﬁrj

¢ Last step, Einstein needed to include a
Principle of least action for deriving the
equations of motion, This was done using the
Einstein-Hilbert action




Math of Greneral Relativiby

Lek (M,q9) a 4-dimensional Lorentzian
monifold, also called spacetime.

The Einstein field equations are given by:

o T := stress-energy tensor.
Ik measures Fhe Llocal mass and momenbum

e & := 2 Ric = § g, the Hilbert-Einstein tensor



Math of Greneral Relativiby

Lek (M,q9) a 4-dimensional Lorentzian
manifold, also called spacetime.

Let McM be a 3-dimensional (embedded and

orientable) sPaaeLLw@. hjjpersurdfa\ﬁe‘

© q induced wmetbric on M
¢ h normal along M <> B second fund. form

(M,9,B) is an initial data set



Math of Greneral Relativiby

Griven an initial data set (M,q,B) in (M,q), we
can express T in terms of the initial daka sek:

o 2p := S - B +(Tr(B)) local mass

e J := div(B-Tr(B)g) Llocal momentum

“Dominant Energy Condition”

e T is timelike or null <> 9] <p



Blaclk holes

6 One of the most fascinating objects in
Creneral Qeta&&vi&v are Blaclk Holes,

o Loosely speaking, black holes are singular
solutions to the Cinstein Field E’quxﬁoms and
they are created by gravitational collapse.







Blaclk holes

MS8T7* April 11, 2017

Firsk imaqge of a
Black Hole 11!

Brightness Temperature (10° K



Blaclk holes

¢ Black hole event horizown is the boumdar'j A
spacetime beyond which Light cannot scape
black holes gravitational force, that is, events
in the interior of the event horizon cannot
affect an oubside observer.

o From a mathematical point of view,
Marginally Outer trapped surfaces MOTS are
widely considered as a good quasi-local
replacement of the event horizon of a black
hole, being such surfaces the natural analoq to
minimal surfaces in General Relakivity,



Makh of Black holes

Let Zc (M,9,8)c(M,9) be a (orientable) compact

surface n an initial data set.

n = normal along M in M; gln)= -1
N := normal along Z in M; gnn)= 1

v := nrN; glvv)= o, Future directed null vector
C := A+B; Second Fundamental Form wak. v

h = Traces(C) = H+rTraces(®)
Posikive Null Expansion



Makh of Black holes

Let Zc (M,9,B)c(M,q) is a Marginally Outer Trapped

Surface, MOTS, iff
h =H+Trace (B)=0

Lek Zc (M,q,B)c(M,q) is a Apparent Horizon Ut

L) Z isa MOTS
iL) There are no outer trapped surfaces outside

“Heuristically, T is the outer Limit of outer
&rapped surfaces”

When Trace(B)=0, Z is a minimal surface !!



Hawkings Theorem

Howlking ('72): The cross sections of the event
horizon tn 4-dimensional asymptotically flat
stationary black hole spacetimes obeying the
dominant enerqy condition are topologically 2-
spheres.




Posikive Mass Theorem

Assuming the Dominant Energy Condition, the mass
of an asymptotically Lok spacetime is non-negative;
furthermore, the mass is zero only for Minkowski
spacetime

Schoen-Yau (79): Using minimal surfaces up to
dimension 7

Witten (¥1): Assuming the manifold is spin; inspired
by Positive Energy Theorems in Supergravity

Schoen=Yau ('17): Using minimal surfaces and no
restriction on the dimension




Penrose lmequat&j

The Penrose inequality estimates the mass of a
spacetime in terms of the total area of its black
holes and is a generalization of the positive mass

theorem.
W a8
e 107

Kienahnitan Case

Huisen-Illmanen (97): Using Inverse Mean Curvature
Flow
Bray (99): Using a Conformal Flow of metrics







