Mathematical models and exact algorithms for the Hospitals / Residents problem with Couples and Ties

Maxence Delorme¹, Sergio García¹, Jacek Gondzio¹, Jörg Kalcsics¹, David Manlove², William Pettersson²

(1) School of Mathematics, University of Edinburgh, United Kingdom

(2) School of Computing Science, University of Glasgow, United kingdom

V Jornadas Doctorales del Programa de Doctorado en Matemáticas de la UCA, 2019

J. Kalcsics HR Problems Nov 2019 1 / 32

Outline

Introduction to the Hospital / Residents Problem

The Hospital / Residents Problem with Ties

The Hospital / Residents Problem with Couple and Ties

J. Kalcsics HR Problems Nov 2019 2 / 32

Scrubs

The Hospital-Resident Problem (HR)

Given

ightharpoonup a set of n_d junior doctors,

Doctors

J. Kalcsics HR Problems Nov 2019

The Hospital-Resident Problem (HR)

Given

- ightharpoonup a set of n_d junior doctors,
- ▶ a set of n_h hospitals with capacity c_i , $(j = 1, ..., n_h)$,

J. Kalcsics HR Problems Nov 2019

The Hospital-Resident Problem (HR)

Given

- ightharpoonup a set of n_d junior doctors,
- ▶ a set of n_h hospitals with capacity c_j , $(j = 1, ..., n_h)$,
- ightharpoonup a ranked list of **acceptable hospitals** for each doctor $\mathcal{H}(i), i = 1, \dots, n_d$,

J. Kalcsics HR Problems Nov 2019

The Hospital-Resident Problem (HR)

Given

- ightharpoonup a set of n_d junior doctors,
- ▶ a set of n_h hospitals with capacity c_i , $(j = 1, ..., n_h)$,
- **ightharpoonup** a ranked list of **acceptable hospitals** for each doctor $\mathcal{H}(i), i = 1, \dots, n_d$,
- ▶ a ranked list of **acceptable doctors** for each hospital $\mathcal{D}(j), j = 1, ..., n_h$.

J. Kalcsics HR Problems Nov 2019 4 / 32

The Hospital-Resident Problem (HR)

Find matching, i.e., an assignment of doctors to hospitals, of

J. Kalcsics HR Problems Nov 2019 5 / 32

The Hospital-Resident Problem (HR)

Find matching, i.e., an assignment of doctors to hospitals, of

J. Kalcsics HR Problems Nov 2019

The Hospital-Resident Problem (HR)

Find matching, i.e., an assignment of doctors to hospitals, of

J. Kalcsics HR Problems Nov 2019

The Hospital-Resident Problem (HR)

Find matching, i.e., an assignment of doctors to hospitals, of

maximum cardinality that

I. Kalesics HR Problems Nov 2019

The Hospital-Resident Problem (HR)

Find matching, i.e., an assignment of doctors to hospitals, of

► maximum cardinality that

I. Kalcsics HR Problems Nov 2019

The Hospital-Resident Problem (HR)

Find matching, i.e., an assignment of doctors to hospitals, of

► maximum cardinality that

I. Kalcsics HR Problems Nov 2019

The Hospital-Resident Problem (HR)

Find matching, i.e., an assignment of doctors to hospitals, of

► maximum cardinality that

J. Kalcsics HR Problems Nov 2019

The Hospital-Resident Problem (HR)

Find matching, i.e., an assignment of doctors to hospitals, of

- ► maximum cardinality that
- ensures **stability**, i.e., no doctor-hospital pair prefer to be matched together than remain with their current assignee/s (if any).

The Hospital-Resident Problem (HR)

Find matching, i.e., an assignment of doctors to hospitals, of

- ► maximum cardinality that
- ensures **stability**, i.e., no doctor-hospital pair prefer to be matched together than remain with their current assignee/s (if any).

J. Kalcsics HR Problems Nov 2019 5 / 32

The Hospital-Resident Problem (HR)

Find matching, i.e., an assignment of doctors to hospitals, of

- ► maximum cardinality that
- ensures **stability**, i.e., no doctor-hospital pair prefer to be matched together than remain with their current assignee/s (if any).

The Hospital-Resident Problem (HR)

Find matching, i.e., an assignment of doctors to hospitals, of

- ► maximum cardinality that
- ensures **stability**, i.e., no doctor-hospital pair prefer to be matched together than remain with their current assignee/s (if any).

Stability & Blocking Pairs

A pair (i, j) is called a **blocking pair** if

ightharpoonup i is unmatched or assigned to a hospital less preferred than j, and

J. Kalcsics HR Problems Nov 2019 6 / 32

Stability & Blocking Pairs

A pair (i, j) is called a **blocking pair** if

- ightharpoonup i is unmatched or assigned to a hospital less preferred than j, and
- ▶ j is either under subscribed or j prefers i to one of its currently assigned doctors.

J. Kalcsics HR Problems Nov 2019 6 / 32

Stability & Blocking Pairs

A pair (i, j) is called a **blocking pair** if

- ightharpoonup i is unmatched or assigned to a hospital less preferred than j, and
- ▶ j is either under subscribed or j prefers i to one of its currently assigned doctors.

A matching is called **stable**, if there does **not exist** a blocking pair.

J. Kalcsics HR Problems Nov 2019 6 / 32

Stability & Blocking Pairs

A pair (i, j) is called a **blocking pair** if

- ightharpoonup i is unmatched or assigned to a hospital less preferred than j, and
- ▶ j is either under subscribed or j prefers i to one of its currently assigned doctors.

A matching is called **stable**, if there does **not exist** a blocking pair.

Gale and Shapley (1962)

- ► A stable matching always exists.
- All stable matchings have the same size.
- ► A stable matching (of maximum cardinality) can be found in **polynomial time**.

Outline

1 Introduction to the Hospital / Residents Problem

The Hospital / Residents Problem with Ties

The Hospital / Residents Problem with Couple and Ties

The Hospital-Resident Problem with Ties (HRT)

Ties occur if

- ▶ a hospital is **indifferent** about two or more doctors
- a doctor is indifferent about two or more hospitals

The Hospital-Resident Problem with Ties (HRT)

Ties occur if

- ▶ a hospital is **indifferent** about two or more doctors
- ▶ a doctor is **indifferent** about two or more hospitals

J. Kalcsics HR Problems Nov 2019 8 / 32

The Hospital-Resident Problem with Ties (HRT)

Ties occur if

- ▶ a hospital is **indifferent** about two or more doctors
- ▶ a doctor is **indifferent** about two or more hospitals

Nov 2019

The Hospital-Resident Problem with Ties (HRT)

Ties occur if

- ▶ a hospital is **indifferent** about two or more doctors
- a doctor is indifferent about two or more hospitals

Nov 2019

The Hospital-Resident Problem with Ties (HRT)

Ties occur if

- ▶ a hospital is **indifferent** about two or more doctors
- ▶ a doctor is **indifferent** about two or more hospitals

The Hospital-Resident Problem with Ties (HRT)

Ties occur if

- ▶ a hospital is **indifferent** about two or more doctors
- a doctor is indifferent about two or more hospitals

Nov 2019

The Hospital-Resident Problem with Ties (HRT)

Ties occur if

- ▶ a hospital is **indifferent** about two or more doctors
- ▶ a doctor is **indifferent** about two or more hospitals

J. Kalcsics HR Problems Nov 2019 8 / 32

Weak Stability

A pair (i, j) is called a **blocking pair** if

i is unmatched or assigned to a hospital strictly less preferred than j, and

J. Kalcsics HR Problems Nov 2019 9 / 32

Weak Stability

A pair (i, j) is called a **blocking pair** if

- ▶ i is unmatched or assigned to a hospital strictly less preferred than i, and
- \triangleright j is either under subscribed or j strictly prefers i to one of its currently assigned doctors.

J. Kalcsics HR Problems Nov 2019 9 / 32

Weak Stability

A pair (i, j) is called a **blocking pair** if

- lacktriangleright is is unmatched or assigned to a hospital strictly less preferred than j, and
- ▶ j is either under subscribed or j strictly prefers i to one of its currently assigned doctors.

Manlove et al. (2002)

- ► A weakly stable matching always exists.
- A weakly stable matching can be found in **polynomial time**.

Weak Stability

A pair (i, j) is called a **blocking pair** if

- lacktriangleright is is unmatched or assigned to a hospital strictly less preferred than j, and
- ▶ j is either under subscribed or j strictly prefers i to one of its currently assigned doctors.

Manlove et al. (2002)

- ► A weakly stable matching **always exists**.
- ► A weakly stable matching can be found in **polynomial time**.
- ► Stable matchings can have different sizes.

Weak Stability

A pair (i, j) is called a **blocking pair** if

- lacktriangleright is is unmatched or assigned to a hospital strictly less preferred than j, and
- ightharpoonup j is either under subscribed or j strictly prefers i to one of its currently assigned doctors.

Manlove et al. (2002)

- ► A weakly stable matching **always exists**.
- ► A weakly stable matching can be found in **polynomial time**.
- ► Stable matchings can have different sizes.
- Finding a maximum cardinality stable matching is NP-hard.

Mathematical Formulation for HRT

Given

- $ightharpoonup n_h$ hospitals and n_d junior doctors,
- ightharpoonup a ranked list of acceptable doctors for each hospital $\mathcal{D}(j)$,
- ightharpoonup a ranked list of acceptable hospitals for each doctor $\mathcal{H}(i)$,

J. Kalcsics HR Problems Nov 2019 10 / 32

Given

- \triangleright n_h hospitals and n_d junior doctors,
- \blacktriangleright a ranked list of acceptable doctors for each hospital $\mathcal{D}(j)$,
- \triangleright a ranked list of acceptable hospitals for each doctor $\mathcal{H}(i)$,
- ▶ the set $\mathcal{H}_{i}^{\leq}(i)$ of hospitals that i ranks at least as good as j,

J. Kalcsics HR Problems Nov 2019 10 / 32

Given

- $ightharpoonup n_h$ hospitals and n_d junior doctors,
- ightharpoonup a ranked list of acceptable doctors for each hospital $\mathcal{D}(j)$,
- ightharpoonup a ranked list of acceptable hospitals for each doctor $\mathcal{H}(i)$,
- ▶ the set $\mathcal{H}_{i}^{\leq}(i)$ of hospitals that i ranks at least as good as j,
- ▶ the set $\mathcal{D}_i^{\leq}(j)$ of doctors that j ranks at least as good as i.

J. Kalcsics HR Problems Nov 2019 10 / 32

Given

- ▶ n_h hospitals and n_d junior doctors,
- ightharpoonup a ranked list of acceptable doctors for each hospital $\mathcal{D}(j)$,
- ightharpoonup a ranked list of acceptable hospitals for each doctor $\mathcal{H}(i)$,
- ▶ the set $\mathcal{H}_{i}^{\leq}(i)$ of hospitals that i ranks at least as good as j,
- ▶ the set $\mathcal{D}_i^{\leq}(j)$ of doctors that j ranks at least as good as i.

Decision variables

$$x_{ij} = \begin{cases} 1 & \text{if doctor } i \text{ is assigned to hospital } j \\ 0 & \text{otherwise} \end{cases}$$

for
$$i = 1, \ldots, n_d$$
, and $j \in \mathcal{H}(i)$.

J. Kalcsics HR Problems Nov 2019 10/32

 $x_{ii} \in \{0, 1\}$

Integer Linear Programming Formulation (Kwanashie & Manlove (2013))

$$\max \sum_{i=1}^{n_d} \sum_{j \in \mathcal{H}(i)} x_{ij}$$
s.t.
$$\sum_{j \in \mathcal{H}(i)} x_{ij} \le 1$$

$$\sum_{i \in \mathcal{D}(j)} x_{ij} \le c_j$$

$$j = 1, \dots, n_h$$

$$c_j \left(1 - \sum_{q \in \mathcal{H}_j^{\le}(i)} x_{iq}\right) \le \sum_{p \in \mathcal{D}_i^{\le}(j)} x_{pj} \quad i = 1, \dots, n_d, j \in \mathcal{H}(i)$$

J. Kalcsics HR Problems Nov 2019 11 / 32

 $i=1,\ldots,n_d, j\in\mathcal{H}(i)$

A pair (i, j) is called a **blocking pair** if

- lacktriangleright is is unmatched or assigned to a hospital strictly less preferred than j, and
- ightharpoonup j is either under subscribed or j strictly prefers i to one of its currently assigned doctors.

Stability constraint

$$c_{j}\left(1 - \sum_{q \in \mathcal{H}_{j}^{\leq}(i)} x_{iq}\right) \leq \sum_{p \in \mathcal{D}_{i}^{\leq}(j)} x_{pj} \qquad i, j \in \mathcal{H}(i)$$

J. Kalcsics HR Problems Nov 2019 12 / 32

Idea

Replace the sum of variables x_{iq} and x_{pj} by the dummy variables

$$y_{ik}^{\scriptscriptstyle d} = \begin{cases} 1 & \text{if doctor } i \text{ is assigned to hospital of rank at most } k \\ 0 & \text{otherwise} \end{cases}$$

 $y_{ik}^h =$ the **number** of doctors assigned to hosp. j of **rank at most** k

Idea

Replace the sum of variables x_{iq} and x_{pj} by the dummy variables

$$y_{ik}^{\scriptscriptstyle d} = \begin{cases} 1 & \text{if doctor } i \text{ is assigned to hospital of rank at most } k \\ 0 & \text{otherwise} \end{cases}$$

 $y_{jk}^{h}=% {\textstyle\int\limits_{jk}^{k}} \left(-\frac{1}{2}\left(-\frac{1}\left(-\frac{1}{2}\left(-\frac{1}{2}\left(-\frac{1}{2}\left(-\frac{1}\left(-\frac{1}{2}\left(-\frac{1}{2}\left(-\frac{1}\left(-\frac{1}{2}\left(-\frac{1}{2}\left(-\frac{1}{2}\left(-\frac{1}{2}\left(-\frac{1}{2}\left$

Stability constraint

$$c_j(1 - y_{ik}^d) \le y_{j,r_i^h(j)}^h$$
 $i, k, j \in \mathcal{H}_k^{=}(i)$

where

- $r_i^h(j)$ is the **rank** of doctor i in $\mathcal{D}(j)$, and
- $ightharpoonup \mathcal{H}_k^=(i)$ the set of hospitals at rank k in $\mathcal{H}(i)$.

J. Kalcsics HR Problems Nov 2019

13 / 32

Define $g^d(i)$ ($g^h(j)$) as the number of **distinct ranks** in $\mathcal{H}(i)$ ($\mathcal{D}(j)$).

New IP Formulation (Delorme et al. (2019))

$$\begin{aligned} & \max & & \sum_{i=1}^{n_d} \sum_{j \in \mathcal{H}(i)} x_{ij} \\ & \text{s.t.} & & \sum_{j \in \mathcal{H}_1^{=}(i)} x_{ij} = y_{i1}^d, & i = 1, \dots, n_d \\ & & \sum_{j \in \mathcal{H}_k^{=}(i)} x_{ij} + y_{i,k-1}^d = y_{ik}^d, & i = 1, \dots, n_d, k = 2, \dots, g^d(i) \\ & & \sum_{i \in \mathcal{D}_1^{=}(j)} x_{ij} = y_{j1}^h, & j = 1, \dots, n_h \\ & & \sum_{i \in \mathcal{D}_n^{=}(j)} x_{ij} + y_{j,k-1}^h = y_{jk}^h, & j = 1, \dots, n_h, k = 2, \dots, g^h(j) \end{aligned}$$

J. Kalcsics HR Problems Nov 2019 14 / 32

New IP Formulation (Delorme et al. (2019))

$$\begin{aligned} y_{j,g^{h}(j)}^{h} &\leq c_{j} & j = 1, \dots, n_{h} \\ c_{j}(1 - y_{ik}^{d}) &\leq y_{j,r_{i}^{h}(j)}^{h} & i = 1, \dots, n_{d}, k = 1, \dots, g^{d}(i), j \in \mathcal{H}_{k}^{=}(i) \\ x_{ij} &\in \{0, 1\} & i = 1, \dots, n_{d}, j \in \mathcal{H}(i) \\ y_{ik}^{d} &\in \{0, 1\} & i = 1, \dots, n_{d}, k = 1, \dots, g^{d}(i) \\ y_{jk}^{h} &\in \mathbb{N} & j = 1, \dots, n_{h}, k = 1, \dots, g^{h}(j) \end{aligned}$$

J. Kalcsics HR Problems Nov 2019 15 / 32

New IP Formulation (Delorme et al. (2019))

$$\begin{aligned} y_{j,g^{h}(j)}^{h} &\leq c_{j} & j = 1, \dots, n_{h} \\ c_{j}(1 - y_{ik}^{d}) &\leq y_{j,r_{i}^{h}(j)}^{h} & i = 1, \dots, n_{d}, k = 1, \dots, g^{d}(i), j \in \mathcal{H}_{k}^{=}(i) \\ x_{ij} &\in \{0, 1\} & i = 1, \dots, n_{d}, j \in \mathcal{H}(i) \\ y_{ik}^{d} &\in \{0, 1\} & i = 1, \dots, n_{d}, k = 1, \dots, g^{d}(i) \\ y_{jk}^{h} &\in \mathbb{N} & j = 1, \dots, n_{h}, k = 1, \dots, g^{h}(j) \end{aligned}$$

For the ILP model, using dummy variables results in

- no change in the continuous relaxation value,
- an increase in the number of variables,
- ▶ an **increase** in the number of constraints,
- a decrease in the number of non-zero elements.

J. Kalcsics HR Problems Nov 2019

15 / 32

Alternative Stability Constraints

Replace the stability constraints by an **alternative version** based on **ranks**.

Introduce new binary variables

$$z_{jk} = \begin{cases} 1 & \text{hospital } j \text{ is filled by doctors of rank at most } k-1 \\ 0 & \text{otherwise} \end{cases}$$

J. Kalcsics HR Problems Nov 2019 16 / 32

Alternative Stability Constraints

Replace the stability constraints by an **alternative version** based on **ranks**.

Introduce new binary variables

$$z_{jk} = egin{cases} 1 & \text{hospital } j \text{ is filled by doctors of rank at most } k-1 \\ 0 & \text{otherwise} \end{cases}$$

Stability constraint

$$1 \le z_{jk} + y_{i,r_j^d(i)}^d$$
 $j, k \ge 2, i \in \mathcal{D}_{k-1}^=(j)$

where

- $ightharpoonup r_j^d(i)$ is the **rank** of hospital j in $\mathcal{H}(i)$, and
- $ightharpoonup \mathcal{D}_{k-1}^{=}(i)$ the set of hospitals at rank k in $\mathcal{H}(i)$.

J. Kalcsics HR Problems Nov 2019

16 / 32

Using this alternative set of stability constraints results in

- ▶ a modification (usually an improvement) in the continuous relaxation,
- ▶ an **increase** in the number of variables,
- ▶ an **increase** in the number of constraints,
- a decrease in the number of non-zero elements.

Further stability constraints modifications

► The **two versions** of stability constraints **do not dominate** each other, both can be used at the same time.

Using both sets of stability constraints results in

- an improvement in the continuous relaxation,
- an increase in the number of variables,
- an increase in the number of constraints,
- an increase in the number of non-zero elements.

J. Kalcsics HR Problems Nov 2019 18 / 32

Further stability constraints modifications

► The **two versions** of stability constraints **do not dominate** each other, both can be used at the same time.

Using both sets of stability constraints results in

- ▶ an improvement in the continuous relaxation,
- an increase in the number of variables,
- an increase in the number of constraints,
- ▶ an increase in the number of non-zero elements.
- ► The two sets stability constraints can be merged.

Merging stability constraints results in

- a deterioration in the continuous relaxation,
- no change in the number of variables,
- ▶ a decrease in the number of constraints,
- ▶ a decrease in the number of non-zero elements.

We used 3 **real world instances** with 750 doctors and 50 hospitals (Scottish junior doctor assignment for 2006-2008).

We used 3 **real world instances** with 750 doctors and 50 hospitals (Scottish junior doctor assignment for 2006-2008).

Instances solved in less than 3600 seconds using Gurobi 7.5.2

Dummy	Stab.	Merged	Opt	Time	Rel.	Var.	Cons.	N.Z.
	V1		3	145	747.4	1898	2714	63 272
Yes	V1		3	19	747.4	4146	4146	11 278
	V2		3	10	744.5	2300	5014	16 495
Yes	V2		3	10	744.5	4548	6446	15 879
	V1, V2		3	16	744.3	2300	6912	75 971
Yes	V1, V2		3	5	744.3	4548	8345	19676
	V1, V2	Yes	3	26	746.2	2300	5363	74 422
Yes	V1, V2	Yes	3	9	746.2	4548	6796	18 127

J. Kalcsics HR Problems Nov 2019 19 / 32

We used 3 **real world instances** with 750 doctors and 50 hospitals (Scottish junior doctor assignment for 2006-2008).

Instances solved in less than 3600 seconds using Gurobi 7.5.2

Dummy	Stab.	Merged	Opt	Time	Rel.	Var.	Cons.	N.Z.
	V1		3	145	747.4	1898	2714	63 272
Yes	V1		3	19	747.4	4146	4146	11 278
	V2		3	10	744.5	2300	5014	16 495
Yes	V2		3	10	744.5	4548	6446	15 879
	V1, V2		3	16	744.3	2300	6912	75 971
Yes	V1, V2		3	5	744.3	4548	8345	19 676
	V1, V2	Yes	3	26	746.2	2300	5363	74 422
Yes	V1, V2	Yes	3	9	746.2	4548	6796	18 127

J. Kalcsics HR Problems Nov 2019 20 / 32

We used 3 **real world instances** with 750 doctors and 50 hospitals (Scottish junior doctor assignment for 2006-2008).

Instances solved in less than 3600 seconds using Gurobi 7.5.2

Dummy	Stab.	Merged	Opt	Time	Rel.	Var.	Cons.	N.Z.
	V1		3	145	747.4	1898	2714	63 272
Yes	V1		3	19	747.4	4146	4146	11 278
	V2		3	10	744.5	2300	5014	16 495
Yes	V2		3	10	744.5	4548	6446	15 879
	V1, V2		3	16	744.3	2300	6912	75 971
Yes	V1, V2		3	5	744.3	4548	8345	19 676
	V1, V2	Yes	3	26	746.2	2300	5363	74 422
Yes	V1, V2	Yes	3	9	746.2	4548	6796	18 127

J. Kalcsics HR Problems Nov 2019 21/32

We used 3 **real world instances** with 750 doctors and 50 hospitals (Scottish junior doctor assignment for 2006-2008).

Instances solved in less than 3600 seconds using Gurobi 7.5.2

Dummy	Stab.	Merged	Opt	Time	Rel.	Var.	Cons.	N.Z.
	V1		3	145	747.4	1898	2714	63 272
Yes	V1		3	19	747.4	4146	4146	11 278
	V2		3	10	744.5	2300	5014	16 495
Yes	V2		3	10	744.5	4548	6446	15 879
	V1, V2		3	16	744.3	2300	6912	75 971
Yes	V1, V2		3	5	744.3	4548	8345	19 676
	V1, V2	Yes	3	26	746.2	2300	5363	74 422
Yes	V1, V2	Yes	3	9	746.2	4548	6796	18 127

J. Kalcsics HR Problems Nov 2019 22 / 32

We used five sets of randomly generated instances with $\kappa\times750$ doctors and $\kappa\times50$ hospitals.

J. Kalcsics HR Problems Nov 2019 23 / 32

We used five sets of randomly generated instances with $\kappa\times750$ doctors and $\kappa\times50$ hospitals.

Number of randomly generated instances solved in less than 1800 seconds using Gurobi 6.5:

Method			$\kappa = 1$		$\kappa = 2$		$\kappa = 3$		$\kappa = 5$	
Dummy	Stab.	Merged	Opt	Time	Opt	Time	Opt	Time	Opt	Time
	V1		25	848	12	2656	2	3485	0	3600
Yes	V1		29	336	17	2056	9	2919	2	3524
	V2		30	82	16	1844	9	2667	2	3491
Yes	V2		30	136	18	1815	10	2694	2	3395
	V1, V2		30	66	25	1170	14	2298	1	3495
Yes	V1, V2		30	62	25	1070	13	2267	4	3372
	V1, V2	Yes	30	134	20	1702	13	2763	1	3509
Yes	V1, V2	Yes	30	52	25	1023	14	2184	2	3397

J. Kalcsics HR Problems Nov 2019 23 / 32

A Special Case: Child Adoption

Child Adoption

Assigning children to foster families.

A Special Case: Child Adoption

Child Adoption

Assigning children to foster families.

The **same algorithms** can be applied (hospitals = families, doctors = children) but

- ► family capacity is 1
- preference lists are longer (based on scores between each pair child/family)
- ▶ objective function is to find a maximum weighted matching

J. Kalcsics HR Problems Nov 2019 24 / 32

A Special Case: Child Adoption

Child Adoption

Assigning children to foster families.

The **same algorithms** can be applied (hospitals = families, doctors = children) but

- ► family capacity is 1
- preference lists are longer (based on scores between each pair child/family)
- objective function is to find a maximum weighted matching

In terms of adaptation

- dummy variables and constraint merging remains the same
- if merging is applied, an additional set of stability constraints can be derived

J. Kalcsics HR Problems Nov 2019 24 / 32

We used a set of 22 **real world instances** with 550 children and 894 families (provided by Coram charity).

J. Kalcsics HR Problems Nov 2019 25 / 32

We used a set of 22 **real world instances** with 550 children and 894 families (provided by Coram charity).

Number of instances solved in less than 3600 seconds using Gurobi 7.5.2

Dummy	Stab.	Merged	Opt	Time	Rel.	Var.	Cons.	N.Z.
	V1		21	434	42 966	94 764	96 208	39 152 977
Yes	V1		22	87	42 966	101 220	101 220	390 790
	V1	Yes	20	416	43 030	94 764	3457	13 619 285
Yes	V1	Yes	22	74	43 030	101 220	8468	298 038
	V2	Yes	20	722	43 010	94 764	7899	39 853 723
Yes	V2	Yes	22	66	43 010	101 220	12911	397 245

J. Kalcsics HR Problems Nov 2019 25 / 32

Number of **randomly generated instances** with $\kappa \times 550$ children and $\kappa \times 894$ families solved in less than 3600 seconds using Gurobi 7.5.2

J. Kalcsics HR Problems Nov 2019 26 / 32

Number of randomly generated instances with $\kappa \times 550$ children and $\kappa \times 894$ families solved in less than 3600 seconds using Gurobi 7.5.2

Method					$\kappa = 1$					$\kappa = 2$		
Dum.	Sta.	Mer.	Opt	Time	Var.	Cons.	N.Z.	Opt	Time	Var.	Cons.	N.Z.
	V1		220	341	64	65	21.2	74	2702	359	361	278.3
Yes	V1		220	115	73	73	0.3	121	2185	380	380	1.5
	V1	Yes	220	202	64	4	6.7	52	2963	359	9	94.9
Yes	V1	Yes	220	84	73	11	0.2	134	2114	380	27	1.1
	V2	Yes	220	508	64	10	21.9	43	3047	359	24	282.4
Yes	V2	Yes	220	56	73	17	0.3	143	2107	380	42	1.5

Number of variables and constraints expressed in thousands Number of non-zero elements expressed in millions

J. Kalcsics HR Problems Nov 2019 26 / 32

Outline

Introduction to the Hospital / Residents Problem

2 The Hospital / Residents Problem with Ties

3 The Hospital / Residents Problem with Couple and Ties

J. Kalcsics HR Problems Nov 2019 27 / 32

Hospital-Resident problem with Couples and Ties (HRCT)

Pairs of doctors can specify their preferences as pair.

Hospital-Resident problem with Couples and Ties (HRCT)

Pairs of doctors can specify their preferences as pair.

Hospitals (c_j)

(2)

Doctors

Couples

Hospital-Resident problem with Couples and Ties (HRCT)

Pairs of doctors can specify their preferences as pair.

J. Kalcsics HR Problems Nov 2019

28 / 32

Hospital-Resident problem with Couples and Ties (HRCT)

Pairs of doctors can specify their preferences as pair.

Given in addition

- ightharpoonup a set of n_c couples of junior doctors,
- ▶ a ranked list $\mathcal{H}^c(i)$ of **acceptable pairs** of hospitals for each couple.

28 / 32

Hospital-Resident problem with Couples and Ties (HRCT)

Pairs of doctors can specify their preferences as pair.

Given in addition

- ▶ a set of n_c couples of junior doctors,
- ▶ a ranked list $\mathcal{H}^c(i)$ of **acceptable pairs** of hospitals for each couple.

Hospital-Resident problem with Couples and Ties (HRCT)

Pairs of doctors can specify their preferences as pair.

Given in addition

- ightharpoonup a set of n_c couples of junior doctors,
- ▶ a ranked list $\mathcal{H}^c(i)$ of **acceptable pairs** of hospitals for each couple.

28 / 32

Hospital-Resident problem with Couples and Ties (HRCT)

Pairs of doctors can specify their preferences as pair.

Given in addition

- ightharpoonup a set of n_c couples of junior doctors,
- ▶ a ranked list $\mathcal{H}^c(i)$ of **acceptable pairs** of hospitals for each couple.

Hospital-Resident problem with Couples and Ties (HRCT)

Pairs of doctors can specify their preferences as pair.

Given in addition

- ightharpoonup a set of n_c couples of junior doctors,
- ightharpoonup a ranked list $\mathcal{H}^c(i)$ of **acceptable pairs** of hospitals for each couple.

Hospital-Resident problem with Couples and Ties (HRCT)

Pairs of doctors can specify their preferences as pair.

Given in addition

- ightharpoonup a set of n_c couples of junior doctors,
- ightharpoonup a ranked list $\mathcal{H}^c(i)$ of **acceptable pairs** of hospitals for each couple.

Hospital-Resident problem with Couples and Ties (HRCT)

Pairs of doctors can specify their preferences as pair.

Given in addition

- ▶ a set of n_c couples of junior doctors,
- ightharpoonup a ranked list $\mathcal{H}^c(i)$ of **acceptable pairs** of hospitals for each couple.

Hospital-Resident problem with Couples and Ties (HRCT)

Pairs of doctors can specify their preferences as pair.

Given in addition

- ▶ a set of n_c couples of junior doctors,
- ▶ a ranked list $\mathcal{H}^c(i)$ of **acceptable pairs** of hospitals for each couple.

Hospital-Resident problem with Couples and Ties (HRCT)

Pairs of doctors can specify their preferences as pair.

Given in addition

- ightharpoonup a set of n_c couples of junior doctors,
- ▶ a ranked list $\mathcal{H}^c(i)$ of **acceptable pairs** of hospitals for each couple.

Hospital-Resident problem with Couples and Ties (HRCT)

Pairs of doctors can specify their preferences as pair.

Given in addition

- ightharpoonup a set of n_c couples of junior doctors,
- ightharpoonup a ranked list $\mathcal{H}^c(i)$ of **acceptable pairs** of hospitals for each couple.

Hospital-Resident problem with Couples and Ties (HRCT)

Pairs of doctors can specify their preferences as pair.

Given in addition

- ightharpoonup a set of n_c couples of junior doctors,
- ightharpoonup a ranked list $\mathcal{H}^c(i)$ of **acceptable pairs** of hospitals for each couple.

3 stability criteria

- ► MM stability by McDermid and Manlove (2010)
- ▶ BIS stability by Biró et al. (2011)
- ► ABH stability by Ashlagi et al. (2014)

3 stability criteria

- ► MM stability by McDermid and Manlove (2010)
- ▶ BIS stability by Biró et al. (2011)
- ► ABH stability by Ashlagi et al. (2014)

The three 3 differ in the way they treat a couple and one hospital.

J. Kalcsics HR Problems Nov 2019 29 / 32

3 stability criteria

- ► MM stability by McDermid and Manlove (2010)
- ▶ BIS stability by Biró et al. (2011)
- ► ABH stability by Ashlagi et al. (2014)

The three 3 differ in the way they treat a couple and one hospital.

J. Kalcsics HR Problems Nov 2019 29 / 32

3 stability criteria

- ► MM stability by McDermid and Manlove (2010)
- ▶ BIS stability by Biró et al. (2011)
- ► ABH stability by Ashlagi et al. (2014)

The three 3 differ in the way they treat a couple and one hospital.

J. Kalcsics HR Problems Nov 2019 29 / 32

Computational experiments – Model improvements

Some improvements to the models:

- Some valid inequalities for stability constraints
- ► Use dummy variables to reduce the number of non-zero elements in the model

Computational experiments – Model improvements

Some improvements to the models:

- Some valid inequalities for stability constraints
- ► Use dummy variables to reduce the number of non-zero elements in the model

Number of randomly generated instances solved in less than 3600 seconds **for MM stability** using Gurobi 7.5.2

Instance					Literature software		Our model		Our improved model	
n_d	n_c	n_h	$\sum c_j$	inst.	opt	time	opt	time	opt	time
5	0	3	5	10	10	0	10	0	10	0
505	50	50	505	9	9	34	9	192	9	1
1005	100	100	1005	9	9	329	6	1624	9	1
2505	250	250	2505	9	1	3530	1	3537	9	3
5005	500	500	5005	10	0	3600	0	3600	10	7

J. Kalcsics HR Problems Nov 2019 30 / 32