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Remarks on mathematical
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The PyECC system · How can you get it · Examples
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Remarks on mathematical computation The PyECC system

A purely Python computational environment. Small, powerful, and
free. Initially designed to cover the computational needs of a book
such as [1] (Error-Correcting Codes. A computational Primer).

It is being extended to meet other related purposes, such as, among
others, the second edition of [1] (planned to have additional chapters
on post-quantum cryptography , quantum codes, and convolutional
codes) and [2] (A second edition of Using intersection theory and
planned to cover a wide range of computations in intersection theory
and enumerative geometry).
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Remarks on mathematical computation How can you get it

For more information, including instructions for how to install it,
visit the Web page PyECC.
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Remarks on mathematical computation Online resources

For online resources related to this talk, visit the Web page PyACA,
which provides access to Python sources and Jupyter notebooks that
are companion materials to the paper [3].

S. Xambó (UPC/BSC) Post-quantum Cryptogrphy 19/11/2019 10 / 60

https://mat-web.upc.edu/people/sebastia.xambo/Papers/PyACA.html


Remarks on mathematical computation Example: Classical reversible logical gates

def NOT(j, x):

x[j] -= 1

return x

# Controlled-not. For j=i, x[i] is set to 0.

def CNOT(i,j, x):

x[j] += x[i]

return x

# Remark: for i=j it agrees with CNOT(j,k, x)

def TOFFOLI(i,j,k, x):

x[k] += x[i]*x[j]

return x

Fact: Any classical computation can be embedded in a reversible
computation (see [4]) and any reversible computation can be
achieved with a sequence of Toffoli gates.
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Remarks on mathematical computation Example: Generating random prime numbers

# To pick a random n-digit prime number

def rd_prime(n):

while True:

r = ri(n) # a random integer of n digits

if even(r): r += 1

if is_prime(r): return r

rd_prime(10) => 31716 43721

rd_prime(100) =>

75549 06889 06549 88619 83249 61562 84269 54436 19389 71081

98583 48723 01531 63041 11630 94137 11913 03811 57707 35373

The density of n-digit prime numbers is ∼ 0.48/(n + 1), which roughly

means an average of 2n trials to produce a prime number.
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Remarks on mathematical computation Example: One-time pad encryption and decryption

# x, the message, is a binary vector

# p is a random binary vector of the same length as x.

# The encrypted message is y = x+p

# Decryption is y + p = x + p + p = x

def one_time_pad(x):

n = len(x)

p = rd_vector(Zn(2),n)

return (x+p,p)

x = rd_vector(Zn(2),25)

one_time_pad(x) =>

([0,0,0,0,0,1,0,0,1,0,1,1,0,0,1,0,0,1,0,0,0,1,1,1,0],

[1,1,1,0,1,0,1,1,1,1,1,1,0,1,1,0,1,1,1,1,0,0,0,0,0])
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Remarks on mathematical computation Example: Generating a one-time pad

# Pseudo-random generator of n bits

# (Blum-Blum-Shup, 1996)

def PRG(n,d=30):

N = rd_prime(d)*rd_prime(d)

x = rd_int(1,N-1)

s = str(x%2)

for _ in range(1,n):

x = x**2 % N

s += str(x%2)

return s

PRG(40) => ’1000101110101010111000111011111010011101’
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Remarks on mathematical computation Example: Random permutation matrix

The function permutation matrix(n) creates a random permutation
matrix of order n.

def rd_permutation_matrix(n):

N = list(range(n))

p = rd_permutation(n)

P = matrix(ZZ(),n,n)

for j in range(n):

P[j,p[j]] = 1

return P

rd_permutation_matrix(5) =>

[[1 0 0 0 0]

[0 0 0 0 1]

[0 1 0 0 0]

[0 0 0 1 0]

[0 0 1 0 0]]
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Remarks on mathematical computation Example: Construction of a random invertible matrix

The construction of uniformly random invertible matrix S of order k
with entries in a finite field F is a bit involved (see [3], particularly
the function rd GL(k,F)). Instead, let us consider an easier function
scramble matrix(k,A) which creates a random S ∈ A(k) with
det(S) = ±1. Note: rd(A) returns an element of A selected
uniformly at random.

def scramble_matrix(k,A):

U = matrix(A,k,k)

L = matrix(A,k,k)

for i in range(k):

U[i,i] = L[i,i] = 1

for j in range(i+1,k):

U[i,j] = rd(A)

L[j,i] = rd(A)

P = permutation_matrix(k)

return P*L*U
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RSA in a nutshell
RSA pairs of prime numbers · RSA keys ·
Encryption and decryption · RSA numbers
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RSA in a nutshell Picking an RSA pair of prime numbers

def rsa_pair(n,m=3):

while True:

p = rd_prime(n); q = rd_prime(n)

if igcd(m,p-1)>1 or igcd(m,q-1)>1 or p==q:

continue

else: break

return (p,q)

rsa_pair(20) =>

(21569513085908660339, 15526103590621876157)

rsa_pair(20,17) =>

(33996414417889718849, 56610744900409885459)
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RSA in a nutshell RSA keys

Fix a positive integer n (in practice today, a three digit number, say
120).

(p, q) an RSA pair of n-digit prime numbers for some m (say m = 3
for concreteness).

k the inverse of m mod (p − 1)(q − 1)

Secret keys: (p, q,m, k).

Public keys: (N ,m), where N = pq.

(p,q) = rsa_pair(10) => (2952363761, 6768633203)

k = inverse(3,(p-1)*(q-1)) => 13322311580211706347

N = p*q = 19983467380038556483
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RSA in a nutshell Encryption and decryption

x : a number in (1,N − 1), the message.

Encryption: y = xm mod N .

Decryption: z = y k mod N .

Fact: z = x .

Proof : y k = (xm)k = xmk = x1+r(p−1)(q−1) = x , as
(p − 1)(q − 1) = ϕ(N) and hence x (p−1)(q−1) = 1 (Euler).

Security

RSA is secure if factoring N is unfeasible.

The best known algorithms factor N (a 2n-digit number)

in subexponential expected time e(1+o(1))r(n), r(n) =
√

2n log(2n).

n 100 200 300 400 500 1000
blog2 e

r(n)c 46 70 89 105 119 177
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RSA in a nutshell RSA numbers

RSA Factoring Challenge: 1991-2007. Each number is the
products of two primes of similar size. Those underlined in red are
quoted in bits, with the number of decimal digits written in grey
above them. The numbers with * have not been factored yet.
Source: https://en.wikipedia.org/wiki/RSA_numbers.
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RSA in a nutshell RSA-768
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RSA in a nutshell RSA-240, RSA-250,...
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McEliece cryptosystems
Ingredients of a McECS · Encryption · Decryption ·

Construction of McECS · Security analysis
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Ingredients of a McECS Local data 1/2

F = Fq, a finite field of cardinal q (base field). The most important
case will be F = Z2.

k a positive integer. The vectors of F k are called information
vectors, or messages.

n > k an integer. The vectors of F n are called transmission vectors.

Notations

If x ∈ F n, we let |x| denote the number of non-zero components of x
and we say that it is the weight of x.

F (r , s) denotes the space of matrices of type r × s with entries in F
and F (r) = F (r , r).
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Ingredients of a McECS Local data 2/2

A receiving user needs the following data:

G ∈ F (k , n) such that rank(G ) = k ;

S ∈ F (k) invertible and chosen uniformly at random;

P ∈ F (n) a random permutation matrix;

t, a positive integer; and

g : X → F k , X ⊆ F n, such that for any u ∈ F k and all e ∈ F n

with |e| 6 t,

x = uG + e ∈ X and g(x) = u. (1)

The map g is called an t-error-correcting G -decoder , or simply
decoder , and the vectors of X are said to be g -decodable.

Private key: {G , S ,P}.

Public key: {G ′, t}, where G ′ = SGP .
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McECS Encryption

Encryption protocol

The protocol that a user has to follow to encript and send a message
u to the user whose public key is {G ′, t} consists of two steps:

Random generation of a transmission vector e of weight t;

Sending the vector x = uG ′ + e = uSGP + e to that user.
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McECS Decryption

Decryption protocol

Consists of four steps that only use private data of the receiver and
the vector x sent by the emitter:

Set y = xP−1, so that y = (uS)G + eP−1.

Set x′ = g(y). Since P is a permutation matrix, |eP−1| = |e| = t,
and hence x′ is well defined, as g corrects t errors. The result is
x′ = (uS)G , which says that x′ is the linear combination of the rows
of G with coefficients u′ = uS .

Since G has rank k , u′ is uniquely determined by x′ and can be
obtained by solving the system of linear equations x′ = u

′G , where u
′

is the unknown vector.

Let u = u
′S−1, which agrees with the message sent by the emitter.
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McECS Construction of G

F = F2 (most constructions also for Fq, q > 2).

F̄ = Fqm , m a positive integer. If β ∈ F̄ , [β] will denote the colum
vector of its components with respect to a basis of F̄/F .

α = α1, . . . , αn ∈ F̄ distinct elements, so that n 6 qm.

p ∈ F̄ [X ] a polynomial of degree r > 0 such that p(αj) 6= 0
(j = 1, . . . , n).

Set hj = 1/p(αj) (j = 1, . . . , n) and

H̄ =


h1 · · · hn

h1α1 · · · hnαn
...

...
h1α

r−1
1 · · · hnα

r−1
n

 ∈ F̄ (r , n).
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McECS Construction of G

Let H ∈ F (r ′, n) be the result of replacing each entry β of H̄ by [β]
(this yields a matrix [H] ∈ F (mr , n)), followed by deleting from [H]
any row that is in the span of the previous ones. Note that r ′ 6 mr .
It also holds that r 6 r ′, as the 〈H〉F̄ = 〈H̄〉F̄ .

Let Γ = Γ(p, α) = {x ∈ F n : xHT = 0}. It is a code of type
[n, k = n − r ′]. This code is called the classical Goppa code
associated to p and α.

We have n −mr 6 k 6 n − r .

Fact: If G ∈ F (k , n) is a generating matrix of Γ, there is
G -decoder that corrects r errors (r/2 for q > 2) provided p has no
multiple roots in F̄ . See, for example, [1, P.4.7]
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McECS Construction of G

Practical specification

Let α be the set of elements of F̄ . Hence n = 2m.

Let p ∈ F̄ [X ] be a monic irreducible of degree t > 1. Then p has
no roots in F̄ and so a generating matrix G of Γ(p,α) has a decoder
g that corrects t errors.

This ends the theoretical construction of a McECS with the
following parameters:

n = 2m, where m is any posivive integer, and p is monic irreducible
of degree t.

H̄ ∈ F̄ (t, n) and G ∈ F (k , n), where k = n − rank(H)
(n − tm 6 k 6 n − t).

Original example: m = 10, n = 1024, t = 50, k = 524 (in this case
k = n − tm, the minimum possible given m and t).
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McECS Security analysis [5, 6], [3]

Horizontal axis R = k/n, WF curves for n = 2j , j = 10, . . . , 13. The red
line represents the WF needed to break RSA with 1000-digit prime
numbers. The similar 500-digit and 200-digit levels are also shown. The
latter is comparable to the original McECS.
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Max Planck (1858-1947), Albert Einstein (1879-1955), Erwing
Schrödinger (1887-1966), Louis de Broglie (1892-1987).

Paul Dirac (1902-1984), Wolfgang Pauli (1909-1958).

Richard Feynman (1918-1988), Peter Shor (1959).
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Quantum computing
q-bits · q-registers · q-computations · q-gates ·
q-algorithms · Shor’s factoring q-algorithm ·

Grover’s searching q-algorithm · The power of
q-computing.
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Quantum computing q-bits (or qubits)

Stern-Gerlach experiment, which uncovered the quantum nature of
the electron spin.
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Quantum computing q-bits (or qubits)

To move from classical to quantum computation, replace
B = {0, 1}, the set of classical bits, by all their ‘superpositions’
(linear combinations with complex coefficients), i.e. by the complex
space E = E (1) generated by B .

(Superpositions of waves occur in classical physics, particularly in
many wave phenomena, and in the related notion of polarization
statates of electromagnetic waves. Its general validity in the context
of quantum physics is one of the main tenets of this theory)

Thus the elements of E have the form ψ = ψ0e0 + ψ1e1, where e0

and e1 is the basis corresponding to 0 and 1 and ψ0, ψ1 ∈ C.

The vectors ψ of norm 1 form a sphere S3 ⊂ E (1) ' R4 and are
called Pauli spinors (|ψ|2 = |ψ0|2 + |ψ1|2).

S. Xambó (UPC/BSC) Post-quantum Cryptogrphy 19/11/2019 37 / 60



Quantum computing q-bits (or qubits)

The q-bit state corresponding to a spinor ψ is the point (in Dirac’s
ket notation) |ψ〉 ∈ S2 ⊂ R3 defined by the formulas

x = (ψ̄0ψ1 + ψ0ψ̄1), y = −i(ψ̄0ψ1 − ψ0ψ̄1), z = (ψ̄0ψ0 − ψ̄1ψ1).

The map S3 → S2, ψ 7→ |ψ〉 is the Hopf fibration.

In fact, |ψ〉 = |ψ′〉 if and only if ψ′ = ξψ for some unit complex
number ξ, a relation that we will denote ψ ∼ ψ′.
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Quantum computing q-bits (or qubits)

If we set
ψφ,θ = e−iφ/2 cos θ

2
e0 + e iφ/2 sin θ

2
e1

(0 6 φ < 2π, 0 6 θ 6 π), then Sφ,θ = |ψφ,θ〉 ∈ S2 is the point at
longitude φ and colatitude θ. In particular,

±X = (±1, 0, 0) = |
√

2
2

(e0 ± e1)〉,

±Y = (0,±1, 0) = |
√

2
2

(e0 ± ie1)〉,

Z = |e0〉 = (0, 0, 1) (North pole), −Z = |e1〉 = (0, 0,−1) (South
pole).
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Quantum computing q-bits (or qubits)
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Quantum computing Measurement

The measurement of a q-bit that is in the state Sφ,θ, which
corresponds to the reading of a classical bit, produces the state
|e0〉 = N =↑ or the state |e1〉 = −N =↓, and this result is a random
event with probabilities pS(↑) = cos2 θ

2
and pS(↓) = sin2 θ

2
.

These states ↑ and ↓ are classical, in that p↑(↑) = p↓(↓) = 1 (in
agreement with the Stern-Gerlach findings), and they are the only
states having this property. For states S on the equator (θ = π/2), ↑
and ↓ are equiprobable, and they are the only ones having this
property.
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Quantum computing q-registers

More generally, the model of a q-register of length n, Qn, is based
on replacing Bn (the space of n-bit strings) by E (n) = 〈Bn〉C, the
complex vector space with basis Bn, represented as the tensor
product (q-entanglement of the q-bits in the q-register) of E (1) with
itself n times.

So the vectors of E (n) have the form ψ =
∑

b∈Bn ψbeb, where
eb = eb1 ⊗ · · · ⊗ ebn ≡ eb1 · · · ebn . A vector ψ is normalized if
|ψ|2 =

∑
b∈Bn |ψb|2 = 1.

Each normalized vector ψ defines a state |ψ〉 in the state space Σn

of a Qn, with the rule that |ψ〉 = |ψ′〉 if and only if ψ′ = ξψ for some
unit complex number ξ. Again, we denote this relation by ψ ∼ ψ′.
As we have seen, Σ1 = S2.

The measuring of Qn in the state S = |ψ〉 returns one of the basis
states |eb〉 ≡ |b〉 at random with probabilities |ψb|2.
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Quantum computing q-computations

The notion of a classical (reversible) computation on n bits is
replaced by a unitary matrix U of order 2n, which can be viewed as a
unitary transformation U : E (n) → E (n).

To any classical computation f : Bn → Bn we can associate the
q-computation Uf : E (n) → E (n) defined by eb 7→ ef (b). It is a
permutation matrix.

In particular we can regard the logical gates CNOT and TOFFOLI
as quantum gates. Thus, for instance, CNOT(1,4) leaves eb fixed if
b1 = 0 and changes it to eb′ if b1 = 1, where b′4 = 1 + b4 and
otherwise b′i = bi .
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Quantum computing Hadamard gate

For a q-bit, the Hadamard gate, H , is defined by e0 7→
√

2
2

(e0 + e1),

e1 7→
√

2
2

(e0 − e1):

H =

√
2

2

(
1 1
1 −1

)
This is a genuine q-gate, as the states ±X defined by H(e0) and
H(e1) are not classical.

In the case of Qn, H can be applied to any q-bit, or to all, in which
case we will denote it by H (n). For example:

H (2)e00 = 1
2
(e0 + e1)(e0 + e1) = 1

2
(e00 + e01 + e10 + e11).

Thus, on measuring, the four possible results 00, 01, 10, 11 are
equiproblable.

In general, H (n)e0···0 =
(√

2
2

)n∑
b∈Bn eb, a superpostion for which all

states |b〉 are equiprobable. This embodies the so-called quantum
parallelism.
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Quantum computing q-algorithms

A q-algorithm is a sequence of Hadamard and Toffoli gates,
followed by a measure of the final state, which is the (classical) bit
string returned by the algorithm.

Example. Initialize Q3 in the state |000〉. Apply H (3). End by a
measuring operation. This q-algorithm yields a uniform random
string of three bits. The generalization to Qn is obvious.

Shor’s q-algorithm factors integers in polynomial time.

Grover’s q-algorithm searches an item in a list of size N in time√
N .

For a systematic introduction to q-computing, including a discussion
of these and other algorithms, see [4], and also the references therein.
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Quantum computing The power of q-computing

An excellent discussion about the complexity theory issues is provided by

Scott Aaronson’ book [7] (Quantum computing since Democritus).
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Post-quantum cryptography
Quantum threats to cryptographic protocols.

McECS as a post-quantum system. Other
post-quantum protocols. The NIST initiative for

PQ protocols.
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PQ cryptography The fate of RSA and McECS

q-computing poses a fundamental threat to widespread
cryptographic systems like RSA.

In principle, it does not pose a threat to McECS (unless P = NP),
because the general problem of decoding linear codes is NP complete
[8] (Berlekamp, McEliece and van Tilborg, 1978: On the inherent
intractability of certain coding problems).

However, for the special codes used in McECS it could still exist an
astute way of using their structure to crack them. But all the
evidence collected in their study so far (see page 32) suggests it is a
post-quantum protocol, in the sense that no computational power
can crack it if the appropriate parameters are used.
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PQ cryptography The NIST initiative

In addition to the McECS, there are other systems that may qualify
as post-quantum cryptography:

Hash-based cryptography;

Code-based cryptography;

Lattice-based cryptography;

Multivariate-quadratic-equations cryptography.

See [9], particularly the introductory paper by D. J. Bernstein.

These, and variations on them, are being considered by NIST with
the goal set at defining and standardize one or more post-quantum
cryptography protocols. See
http://dx.doi.org/10.6028/NIST.IR.8105.
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Urmila Mahadev
For outstanding achievements
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Urmila Makadev For outstanding achievements
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Urmila Makadev For outstanding achievements

“Urmila Mahadev spent eight years in graduate school solving one of
the most basic questions in quantum computation: How do you know
whether a quantum computer has done anything quantum at all?”
(article by Erika Klarreich, 8 October 2018, in Quantamagazine).

https://www.quantamagazine.org/

graduate-student-solves-quantum-verification-problem-20181008/

See [10] (U. Mahadev, Classical Verification of Quantum
Computations).
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Abstract. We present the first protocol allowing a classical computer
to interactively verify the result of an efficient quantum computation.

We achieve this by constructing a measurement protocol , which
enables a classical verifier to use a quantum prover as a trusted
measurement device.

The protocol forces the prover to behave as follows: (1) the prover
must construct an n qubit state of his choice, (2) measure each qubit
in the Hadamard or standard basis as directed by the verifier, and
(3) report the measurement results to the verifier.

The soundness of this protocol is enforced based on the assumption
that the learning with errors problem [one of the post-quantum
protocols] is computationally intractable for efficient quantum
machines.

S. Xambó (UPC/BSC) Post-quantum Cryptogrphy 19/11/2019 53 / 60



Further references
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Further references

On mathematical cryptography: [11].

For a study of McECS and its security: [3]

On quantum computing: [12]. For an approach to the q-bit based on
the stereographic projection of S2, see [13].

Another important paper of Urmila Mahadev: [14].
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pp. 183–231, 2013.

English version:
https://mat-web.upc.edu/people/sebastia.xambo/QC/qc.pdf.

[5] D. J. Bernstein, T. Lange, and C. Peters, “Attacking and defending the
McEliece cryptosystem,” in Post-Quantum Cryptography (J. D. E.
J. Buchanan, ed.), vol. 5299 of Lecture Notes Computer Science, pp. 31–46,
Springer, 2008.

Proceedings of the Second PQCrypto international workshop, Cincinnati,
OH, USA, October 17-19, 2008.
https://cr.yp.to/codes/mceliece-20080807.pdf.
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