Banach limits Evgeny Semenov Voronezh, Russia

A linear functional $B \in l_{\infty}^*$ is called a Banach limit if

1. $B \ge 0$, i. e. $Bx \ge 0$ for $x \ge 0$ and B1 = 1.

2. B(Tx) = B(x) for all $x \in l_{\infty}$, where T is a shift operator, i. e.

$$T(x_1, x_2, \ldots) = (x_2, x_3, \ldots).$$

The existence of Banach limits was proven by S. Banach in his book. It follows from the definition, that $Bx = \lim_{n\to\infty} x_n$ for every convergent sequence $x \in l_{\infty}$ and $||B||_{l_{\infty}} = 1$. Denote the set of all Banach limits by \mathfrak{B} . It is clear that \mathfrak{B} is a closed convex subset of the unit sphere of the space l_{∞}^* . Hence, $||B_1 - B_2|| \leq 2$ for every $B_1, B_2 \in \mathfrak{B}$.

The set $A \subset l_{\infty}$ is called the set of uniqueness if the fact that two Banach limits B_1 and B_2 coincide on A implies that $B_1 = B_2$.

It was shown that under some restrictions on the operator H, acting on l_{∞} , there exists such $B \in \mathfrak{B}$ that Bx = BHx for every $x \in l_{\infty}$. We denote by $\mathfrak{B}(H)$ the set of all such Banach limits.

The sets of uniqueness, invariant Banach limits and extremal points of \mathfrak{B} will be discussed in the talk.

Joint works with F. A. Sukochev and A. S. Usachev